Introduction

Annex 2 provides a summary of the work completed by eight of the nine technical work groups in support of the Lake Ontario–St. Lawrence River Study, including Environment, Recreational Boating and Tourism, Coastal, Commercial Navigation, Hydropower, Municipal and Industrial Water Uses, Hydrology and Hydraulics and Common Data Needs/Information Management. The work of the Plan Formulation and Evaluation Group is not included here as it is covered in the Final Report. For more information on the Plan Formulation and Evaluation Group, refer to the final report of that technical work group (Werick and Leger, 2005).

In addition to a summary of the work conducted by the Technical Work Group, the six interest-specific technical work groups prepared contextual narratives for their interest groups. These narratives were prepared to explain baseline conditions, key trends in an area of interest, how an interest adapts to changing water levels, and how an interest is affected by a management plan. The technical work groups were asked to use their best professional judgment in identifying the most likely trends, outcomes and ways of adapting to changing water levels. In addition to the six interest-specific technical work groups, an additional contextual narrative was prepared to address Aboriginal peoples.
A. Environmental Technical Work Group Summary

Objectives

The Environmental Technical Work Group (ETWG) was tasked with defining the ecological response of the Lake Ontario–St. Lawrence River (LOSL) system to different water level and flow conditions and finding criteria to guide development of a regulation plan that could benefit the environment. Like the other technical work groups, the Environmental Group used performance indicators (PIs), or more specifically, metrics of performance indicators to define the environmental response to a particular regulation plan. The indicators were designed to provide quantitative information on the behavior of various aspects of the ecosystem (e.g., wetlands, suitable habitat), including population measures for a number of faunal species, among them species at risk.

Data Collection and Evaluation Methodology

Members of the Environmental Technical Work Group developed and undertook field research programs that would permit the development of predictive relationships for how those species or guilds of species would respond to patterns of water levels and flows in the Lake Ontario–St. Lawrence River system. The Work Group conducted more than 20 research studies for the purpose of quantifying the linkage between various ecosystem components and water levels/flows in the Lake Ontario–St. Lawrence River system.

Through its work, a complete set of over 400 ecological performance indicators was developed by the Environmental Technical Work Group to represent habitat supply and/or population response in each of three regions (Lake Ontario, the upper St. Lawrence River and the lower St. Lawrence River) for six indicator groups: wetland vegetation, fish species/guilds, wetland birds, herptiles (amphibians and reptiles), mammals, and species-at-risk. A specific metric (and associated units) was identified for each performance indicator. The performance indicator metric provides a means for measuring and computing the response of that particular indicator. For example, fish habitat supply indicators were calculated as weighted suitable habitat area in hectares.

In the development of a conceptual model of the linkages between the environment and water levels and flows, wetlands were identified as a fundamental component of the process. Wetlands respond to the frequency of high and low water levels through the coverage and diversity of plant species. Changes in wetlands result in associated changes in suitable habitat for species, and, in many cases, the response of a particular species is directly tied to the response of the wetlands. However, water levels and flows can also affect faunal species directly. The species-at-risk group includes members of the other faunal groups, which are considered separately because of their special interest status (including, in most cases, protection by law). A flow chart illustrating the generalized linkages between faunal responses, wetland habitat, and water levels and flows is provided in Figure A-1.
The Study Board and the Environmental Technical Work Group recognized the need for an integrating framework to permit all environmental performance indicators to be driven by the same set of forcing functions (water levels and flows, and their impact on habitat within the study domain), and to allow for simultaneous evaluation of all environmental performance indicators in the interest of ensuring that conflicts might be identified and understood. The Environmental Technical Work Group chose to use an integrated modeling framework, called the Integrated Ecological Response Model (IERM), to formulate and integrate its quantitative understanding of how the water level and flow-sensitive ecosystem components represented by the performance indicators would respond to alternative plans.

The development and application of the IERM was led by Limno-Tech Inc., in close cooperation with fellow modelers for the lower St. Lawrence River from Environment Canada–Quebec Region, and the entire Environmental Technical Work Group. Regular interaction throughout the study with other technical work groups, the Plan Formulation and Evaluation Group, and the Study Board contributed to the final product. The IERM was consistent with the Shared Vision Planning process developed for the Study and became the environmental wing of the Shared Vision Model (SVM).

In accordance with direction from the Study Board, one of the key assumptions used in formulating the IERM was that the model was not to consider the response of various performance indicators to forcing functions other than water levels and flows and temperature. Other recognized important stressors on the Lake Ontario–St. Lawrence River ecosystem—such as nutrient and sediment supplies from the watershed, toxic chemical exposure, land use changes, nuisance exotic species invasions, and, in the case of some species, stocking and harvesting practices—were assumed to be constant among the various plan-scenario conditions tested.
Context

As in the case of the economic evaluations, the environmental impacts of proposed regulation plans were measured relative to what is expected to occur if regulation continues in the same manner as it does now, under the present set of policies.

The focus of the environmental evaluation was on the effect of water levels on coastal marshes. Briefly, water level regulation has reduced the variety of plant species along the coast, which creates stresses on animal populations that thrive on plant types that suffer under regulated water levels. In general, a more diverse environment will better resist impacts from the two greatest environmental threats in the Great Lakes: toxics and invasive species (Tilman and Downing, 1987; Schindler, 1998). Lake Ontario coastal marshes provide breeding and feeding grounds for all coastal life, including several species at risk. Water level patterns have a direct physical influence on the breeding and nesting success of marsh birds and fish. More varied water levels create more variety in marsh plants, which creates a more productive and robust coastal ecology and habitat. Water levels below the Moses-Saunders Dam can strand or drown fish and bird eggs. The societal value of the environment is expressed through laws protecting habitat (i.e., wetlands) and specific faunal species (special interest or endangered).

The current estimate of coastal wetland area within Lake Ontario and the upper St. Lawrence River is approximately 26,000 hectares (64,250 acres), made up of four basic types, submerged aquatic vegetation, emergent marsh, meadow marsh, and upland vegetation (trees/shrubs) (Wilcox, et al., 2005). Over 80% of the wetland area occurs in the eastern half of the Lake Ontario basin and Thousand Islands region. Results from study-site analyses indicate a 50% reduction in meadow-marsh and emergent-floating vegetation since regulation was implemented in the late 1950s. The same period has seen a 29% increase in cattail-dominated emergent marsh area (about 1,700 hectares or 4,200 acres) (Wilcox and Ingram, 2005).

With over 12,000 ha (30,000 acres) of swamps and marshes, Lake Saint-Pierre accounts for 80% of lower St. Lawrence River wetlands. Lake Saint-Pierre supports a large population of nesting blue heron (more than 1,300 nests), a major staging area for migratory wildfowl (over 800,000 ducks and geese annually) and 167 species of nesting birds. Permanently submerged areas, wetlands and the spring floodplain are home to 13 amphibian and 79 fish species, many of which are exploited by sport and commercial fisheries alike (Centre St. Laurent, 1996). The ecological value of Lake Saint-Pierre has been recognized by its designation as a Ramsar wetland, a UNESCO Biosphere Reserve and its inclusion as a protected site under the Eastern Habitat Joint Venture. The hydrology of the lower St. Lawrence River is much more dynamic than that of the Lake and upper river throughout each period of the year. It is influenced not only by the outflows from Lake Ontario, but also by the Ottawa River flow and by the local tributaries. As a result, the lower St. Lawrence River is less sensitive to regulation.

In addition to impacts caused by regulation, the effects of changes in climate, water temperature, and water supply can influence the environmental response of habitats and the species they support. Issues such as invasive species, changes in fisheries management, pollution and population changes, and changes in the use of the resource can also impact the environment. Regardless of the regulation plan, the environment will continue to be vulnerable to various stressors such as invasive species, pollution, and land-use changes. However, the manner in which lake levels are managed can have an impact on the ecological integrity of the system and its resilience to these other stressors.
Performance Indicators

As noted earlier, the Environmental Technical Work Group initially established over 400 performance indicators for assessing impacts of levels and flows. It quickly became apparent that 400 performance indicators were far too many for the Study Board to make sense of. Through an extensive process that involved using the IERM to evaluate the response of all 400 performance indicators to alternative plan/supply scenarios, a subset of 32 key performance indicators was identified on the basis of the following criteria:

- **Significance** – the performance indicators must show some key importance to the ecosystem and region;
- **Certainty** – there must be confidence in the performance indicators’ results;
- **Sensitivity** – the performance indicators must be significantly affected by the changes in levels and flows generated by the alternative regulation plans and/or supply scenarios being tested.

Performance indicators were also grouped based on similar responses to water levels and flows. In other words, each key indicator may represent a number of other indicators that behave similarly. The 32 key performance indicators selected for primary use in comparing and evaluating alternative regulation plans are presented in tables A-1 and A-2. It was these 32 key performance indicators that were used by the Study Board in the plan evaluation process. Descriptions of each of the key performance indicators, including comments on certainty, sensitivity and significance, are included in the Integrated Environmental Response Model documentation (Limno-Tech, 2005).

Even with this reduction in performance indicators, the Study Board still needed some way of comparing the different performance indicator metrics (e.g., area of wetland vs. productivity, vs. reproduction indices). It was important to adopt an approach that could be used to effectively compare the responses of many indicators to alternative regulation plans. A performance indicator “ratio” approach was developed collaboratively by Limno-Tech Inc. and the Environmental Technical Work Group to provide a means for rapidly evaluating plan responses. The response ratios are defined in such a way that it is easy to establish which plan is “better” in terms of each indicator by comparing the ratio with 1.00, where 1.00 is the environmental response under the baseline plan 1958-DD, anything greater than 1.00 represents an improvement, and anything below 1.00 a deterioration relative to 1958-DD. For example, a score of 1.44 would indicate that a performance indicator performed 44% better under the evaluated plan than under 1958-DD. The Study Board stipulated that all plans were to be measured against Plan 1958-DD as the baseline plan, but the Environmental Technical Work Group also used the Pre-project Plan in its comparisons to serve as the natural reference condition.
<table>
<thead>
<tr>
<th>Region</th>
<th>PI Group</th>
<th>PI Description</th>
<th>PI Metrics</th>
<th>Researchers</th>
<th>Significance</th>
<th>Certainty</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lake Ontario</td>
<td>Vegetation</td>
<td>Wetland Meadow Marsh Community - Total surface area, supply-based (Lake Ontario)</td>
<td>ha</td>
<td>Wilcox, Ingram</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Lake Ontario</td>
<td>Fish</td>
<td>Low Veg 18C - Spawning habitat supply (Lake Ontario)</td>
<td>ha-days</td>
<td>Minns, Doka, Chu, Bakelaar, Leisti</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Lake Ontario</td>
<td>Fish</td>
<td>High Veg 24C - Spawning habitat supply (Lake Ontario)</td>
<td>ha-days</td>
<td>Minns, Doka, Chu, Bakelaar, Leisti</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Lake Ontario</td>
<td>Fish</td>
<td>Low Veg 24C - Spawning habitat supply (Lake Ontario)</td>
<td>ha-days</td>
<td>Minns, Doka, Chu, Bakelaar, Leisti</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Lake Ontario</td>
<td>Fish</td>
<td>Northern Pike – Young-of-year (YOY) recruitment index</td>
<td>index</td>
<td>Minns, Doka</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Lake Ontario</td>
<td>Fish</td>
<td>Largemouth Bass - YOY recruitment index (Lake Ontario)</td>
<td>index</td>
<td>Minns, Doka</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Lake Ontario</td>
<td>Birds</td>
<td>Virginia Rail (RALI) - Median reproductive index</td>
<td>index</td>
<td>DesGranges, Ingram, Drolet</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Lake Ontario</td>
<td>Species at risk (bird)</td>
<td>Least Bitter (IXEX) - Median reproductive index</td>
<td>index</td>
<td>DesGranges, Ingram, Drolet</td>
<td>5</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Lake Ontario</td>
<td>Species at risk (bird)</td>
<td>Black Tern (CHNI) - Median reproductive index</td>
<td>index</td>
<td>DesGranges, Ingram, Drolet</td>
<td>5</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Lake Ontario</td>
<td>Species at risk (bird)</td>
<td>Yellow Rail (CONO) - Preferred breeding habitat coverage (Lake Ontario)</td>
<td>ha</td>
<td>Lantry, Schiavone</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Lake Ontario</td>
<td>Species at risk (bird)</td>
<td>King Rail (RAEL) - Preferred breeding habitat coverage (Lake Ontario)</td>
<td>ha</td>
<td>Lantry, Schiavone</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Upper SL River</td>
<td>Fish</td>
<td>Low Veg 18C - Spawning habitat supply (Upper St. Lawrence)</td>
<td>ha-days</td>
<td>Minns, Doka, Chu, Bakelaar, Leisti</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Upper SL River</td>
<td>Fish</td>
<td>High Veg 24C - Spawning habitat supply (Upper St. Lawrence)</td>
<td>ha-days</td>
<td>Minns, Doka, Chu, Bakelaar, Leisti</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Upper SL River</td>
<td>Fish</td>
<td>Low Veg 24C - Spawning habitat supply (Upper St. Lawrence)</td>
<td>ha-days</td>
<td>Minns, Doka, Chu, Bakelaar, Leisti</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Upper SL River</td>
<td>Fish</td>
<td>Northern Pike - YOY recruitment index (USL)</td>
<td>index</td>
<td>Minns, Doka</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Upper SL River</td>
<td>Fish</td>
<td>Largemouth Bass - YOY recruitment index (USL)</td>
<td>index</td>
<td>Minns, Doka</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Upper SL River</td>
<td>Fish</td>
<td>Northern Pike - YOY net productivity (USL - Thousand Islands)</td>
<td>grams (wet wt.)/ha</td>
<td>Farrell</td>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Upper SL River</td>
<td>Birds</td>
<td>Virginia Rail (RALI) - Median reproductive index</td>
<td>index</td>
<td>DesGranges, Ingram, Drolet</td>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Upper SL River</td>
<td>Mammals</td>
<td>Muskrat (ONZI) - House density in drowned river-mouth wetlands (Thousand Islands area)</td>
<td>#/ha</td>
<td>Farrell, Toner</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>
Table A-2: Lower St. Lawrence River Environmental Performance Indicators

<table>
<thead>
<tr>
<th>Region</th>
<th>PI Group</th>
<th>PI Description</th>
<th>PI Metrics</th>
<th>Researchers</th>
<th>Significance</th>
<th>Certainty</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower SL River</td>
<td>Fish</td>
<td>Golden Shiner (NOCR) - Suitable feeding habitat surface area (Lac St. Louis to Trois-Rivières)</td>
<td>ha</td>
<td>Mingelbier, Morin</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Lower SL River</td>
<td>Fish</td>
<td>Wetlands Fish - Abundance index (Lower St. Lawrence)</td>
<td>index</td>
<td>de Lafontaine, Marchand</td>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Lower SL River</td>
<td>Fish</td>
<td>Northern Pike (ESLU) - Suitable reproductive habitat surface area (Lac St. Louis to Trois-Rivières)</td>
<td>ha</td>
<td>Mingelbier, Morin</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Lower SL River</td>
<td>Birds</td>
<td>Migratory Wildfowl - Floodplain habitat surface area (Lac St. Louis to Trois-Rivières)</td>
<td>ha</td>
<td>Lehoux, Dauphin, Champoux, Morin</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Lower SL River</td>
<td>Birds</td>
<td>Virginia Rail (RALI) - Reproductive index (Lac St. Louis to Trois-Rivières)</td>
<td>index</td>
<td>DesGranges, Ingram, Drolet</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Lower SL River</td>
<td>Birds</td>
<td>Migratory Wildfowl - Productivity (Lac St. Louis to Trois-Rivières)</td>
<td># of juveniles</td>
<td>Lehoux</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Lower SL River</td>
<td>Birds</td>
<td>Black Tern (CHNI) - Reproductive index (Lac St. Louis to Trois-Rivières)</td>
<td>index</td>
<td>DesGranges, Ingram, Drolet</td>
<td>5</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Lower SL River</td>
<td>Herptiles</td>
<td>Frog sp. - Reproductive habitat surface area (Lac St. Louis to Trois-Rivières)</td>
<td>ha</td>
<td>Armellin, Champoux, Morin, Rioux</td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Lower SL River</td>
<td>Mammals</td>
<td>Muskrat (ONZI) - Surviving houses (Lac St. Louis to Trois-Rivières)</td>
<td># of houses</td>
<td>Ouellet, Morin</td>
<td>4</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Lower SL River</td>
<td>Species at risk (bird)</td>
<td>Least Bittern (IXEX) - Reproductive index (Lac St. Louis to Trois-Rivières)</td>
<td>index</td>
<td>DesGranges, Ingram, Drolet</td>
<td>5</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Lower SL River</td>
<td>Species at risk (bird)</td>
<td>Eastern Sand Darter (AMPE) - Reproductive habitat surface area (Lac St. Louis to Trois-Rivières)</td>
<td>ha</td>
<td>Giguère, Laporte, Morin</td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Lower SL River</td>
<td>Species at risk (herptile)</td>
<td>Spiny Softshell Turtle (APSP) - Reproductive habitat surface area (Lac St. Louis to Trois-Rivières)</td>
<td>ha</td>
<td>Giguère, Laporte, Morin</td>
<td>4</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Lower SL River</td>
<td>Species at risk</td>
<td>Bridle Shiner (NOBI) - Reproductive habitat surface area (Lac St. Louis to Trois-Rivières)</td>
<td>ha</td>
<td>Giguère, Laporte, Morin</td>
<td>4</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>
At the request of the Study Board, the Environmental Technical Work Group also provided error bounds around these ratios so the Study Board could clearly determine which plans were having a significant impact on a specific performance indicator. The Work Group identified a 10% error bound around performance indicators, with the exception of the fish indicators, which were assigned an error bound of 5%. The lower St. Lawrence River performance indicators were assigned a 10% error bound. For consistency, the Study Board used a standard 10% error bound on all environmental performance indicators.

The Environmental Technical Work Group further assisted the Study Board by identifying a sub-group of 13 priority performance indicators which they felt should be given greater weight in the decision process because, collectively, they provide a coherent and consistent account of the impacts of a regulation plan. The priority performance indicators are listed below.

<table>
<thead>
<tr>
<th>Lake Ontario and upper St. Lawrence River</th>
<th>Lower St. Lawrence River</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meadow Marsh</td>
<td>Golden shiner suitable feeding habitat area</td>
</tr>
<tr>
<td>Black tern reproductive index</td>
<td>Virginia rail reproductive index</td>
</tr>
<tr>
<td>Virginia rail reproductive index</td>
<td>Migratory wildfowl productivity</td>
</tr>
<tr>
<td>Muskrat house density</td>
<td>Northern pike reproductive area</td>
</tr>
<tr>
<td>Northern pike YOY</td>
<td>Bridle shiner reproductive habitat surface area</td>
</tr>
<tr>
<td>Large-mouth bass YOY</td>
<td>Muskrat surviving houses</td>
</tr>
<tr>
<td>High Veg 24C fish guild</td>
<td></td>
</tr>
</tbody>
</table>

A further sub-group of key performance indicators was defined for the purposes of the National Academy of Science/Royal Society of Canada independent peer review. With the exception of the wetland marsh indicator, each of the remaining performance indicators in the list is a species at risk. These indicators were chosen for review because they appeared to represent the greatest potential for conflict with indicators from other technical work groups, in terms of development of a regulation plan. The indicators chosen for the external peer review included:

- Wetland meadow marsh area (Lake Ontario)
- Least bittern (Lake Ontario) and least bittern (lower river, Lac St. Louis to Trois-Rivières) reproductive index
- King rail (Lake Ontario) preferred breeding habitat coverage
- Yellow rail (Lake Ontario) preferred breeding habitat coverage
- Black tern (Lake Ontario) reproductive index
- Spiny softshell turtle (Lac St. Louis to Trois-Rivières) reproductive habitat surface area
- Bridle shiner (Lac St. Pierre) reproductive habitat surface area
- Eastern sand darter (Lac St. Louis to Trois-Rivières) reproductive habitat surface area

Finally, the Environmental Technical Work Group was asked by the Study Board to provide an overall environmental index. While the Work Group cautioned the Study Board against using such an index for plan ranking since too much underlying information is lost, an overall environmental index was developed by Limno-Tech. This index did prove helpful to the Study Board when used in concert with the 32 key performance indicators because it gave a relative score among plans that was not always obvious when all 32 performance indicators were considered.

The overall environmental index was developed based on a weighting scheme that assigns weighting factors to 1) individual performance indicators, 2) performance indicator groups within the three regions (Lake Ontario, the upper St. Lawrence River and the lower St. Lawrence River, and 3) the three regions. Based on these weighting factors, the performance indicator ratios (relative to 1958-DD) are collapsed into group weighted average ratios, region weighted average ratios, and finally an overall index. The complete weighting scheme is provided in Table A-3.

ANNEX 2

Options for Managing Lake Ontario and St. Lawrence River Water Levels and Flows
<table>
<thead>
<tr>
<th>LOSL Region</th>
<th>PI Group</th>
<th>Key Performance Indicator</th>
<th>Significance Rating</th>
<th>Certainty Rating</th>
<th>PI Weight</th>
<th>Group Weight</th>
<th>Region Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lake Ontario</td>
<td>Vegetation</td>
<td>Wetland Meadow Marsh Community - Total surface area, supply-based</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low Veg 18C - Spawning habitat supply</td>
<td>0.11</td>
<td>1.00</td>
<td>0.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>High Veg 24C - Spawning habitat supply</td>
<td>0.72</td>
<td>1.00</td>
<td>0.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low Veg 24C - Spawning habitat supply</td>
<td>0.17</td>
<td>1.00</td>
<td>0.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Northern Pike - YOY recruitment</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Largemouth Bass - YOY recruitment</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fish</td>
<td>Virginia Rail (RALI) - Reproductive index</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Least Bittern (IXEX) - Reproductive index</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Black Tern (CHNI) - Reproductive index</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yellow Rail (CONO) - Preferred breeding habitat coverage</td>
<td>0.50</td>
<td>0.50</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>King Rail (RAEL) - Preferred breeding habitat coverage</td>
<td>0.50</td>
<td>0.50</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Species at Risk</td>
<td>Low Veg 18C - Spawning habitat supply</td>
<td>0.11</td>
<td>1.00</td>
<td>0.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>High Veg 24C - Spawning habitat supply</td>
<td>0.72</td>
<td>1.00</td>
<td>0.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low Veg 24C - Spawning habitat supply</td>
<td>0.17</td>
<td>1.00</td>
<td>0.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Northern Pike - YOY recruitment</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Largemouth Bass - YOY recruitment</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Northern Pike - YOY net productivity (Thousand Islands)</td>
<td>0.50</td>
<td>1.00</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Virginia Rail (RALI) - Reproductive index (Lake St. Lawrence)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Muskrat (ONZI) - House density in drowned river-mouth wetlands (Thousand Islands)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper St. Lawrence River</td>
<td>Fish</td>
<td>Golden Shiner (NOCR) - Suitable feeding habitat surface area</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wetlands Fish - Abundance index</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Northern Pike (ESLU) - Suitable reproductive habitat surface area</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Birds</td>
<td>Migratory Wildfowl - Floodplain habitat surface area</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Virginia Rail (RALI) - Reproductive index</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Migratory Wildfowl - Productivity</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Black Tern (CHNI) - Reproductive index</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Herptiles</td>
<td>Frog sp. - Reproductive habitat surface area</td>
<td>1.00</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Muskrat (ONZI) - Surviving houses</td>
<td>1.00</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower St. Lawrence River</td>
<td>Species at Risk</td>
<td>Least Bittern (IXEX) - Reproductive index</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eastern Sand Darter (AMPE) - Reproductive habitat surface area</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spiny Softshell Turtle (APSP) - Reproductive habitat surface area</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bridle Shiner (NOBI) - Reproductive habitat surface area</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table A-3: Weighting Scheme for Ecological Integrity Index
It is important to note that while the overall environmental index provides an overview of the key performance indicator results, the index alone should not be considered sufficient to evaluate and rank plans; if it is used by itself, important differences between regulation plans (e.g., number and magnitude of ecological losses relative to 1958-DD) will be obscured. Therefore, it is important to always evaluate the individual key performance indicator ratios in addition to the overall environmental index.

Analysis and Findings

Water levels and flow are the major factors determining the species composition, productivity and distribution of wetlands (swamps, meadows, marsh, submerged vegetation) and other aquatic habitats (rapids, open water) in Lake Ontario and the St. Lawrence River. In Lake Ontario, reduction of the amplitude of water level variations was shown to have major effects on wetland habitats. At the upper elevations, colonization of wet meadows by shrubs was shown to result from the reduction of high level episodes. Conversely, the reduction of low-level episodes coincided with the dominance of cattails in lower marshes. These changes result in a reduction of wetland habitat diversity and surface area.

In the St. Lawrence River, the surface area of wetlands has varied widely over the past 60-year series, mostly as a result of periods of high (1970-1980) and low (1960, late 1990s) water supplies to the watershed. Invasive species propagation and dense, closed wetland cover dominated by cattail have been favoured by recent extreme low-level episodes (1995, 1999, 2001).

In Lake Ontario as well as the St. Lawrence River, wetlands provide essential habitats over the entire life cycle of aquatic animals, which use these areas for breeding, feeding and as shelters from predators. Among the wide variety of micro-organisms, semi-aquatic and aquatic animals using wetlands, the Environmental Technical Work Group identified performance indicators for several fish, wildfowl, songbirds, amphibians, reptiles and one mammal species. For all these species, the surface area of breeding and/or feeding habitat was modeled as a function of water level variations, since the availability of these habitats is positively linked to the reproductive success of and support capacity for animal populations.

Current muskrat population levels in the upper St. Lawrence River are extremely low, so any improvement tends to create large positive ratios. Muskrats constitute a very important part of both wetland structure and function and therefore represent much more than just their own species. They can influence vegetation species richness in wetlands, offer suitable substrate for seed germination, help facilitate decomposition processes, provide nesting sites for birds and turtles including some species at risk, and create microtopography in wetlands. Many bird, mammal, plant, and likely fish species (e.g., northern pike) respond favourably to the increases in open water and edge and channel effects created as a result of muskrat disturbance.

The presence/absence and annual density of active muskrat houses were used to estimate house density in order to represent the performance of muskrats. Fall and winter bring the most challenging conditions for muskrat populations, and winter flooding of muskrat houses can be very damaging.

Many of the wetland birds, such as black tern, least bittern and Virginia rail, represent an index of reproductive potential in emergent marsh during the breeding season, based on carrying capacity (an annual estimate of the number of potential breeding pairs in emergent marsh). Therefore, if the emergent marsh is doing well, these species generally also do well. These species were sensitive to water level changes on Lake Ontario brought about by regulation.
In the St. Lawrence River, high spring levels and access to the floodplain were shown to benefit wildfowl productivity, pike reproduction and managed marshes. Later in the season, short-term rises in levels resulted in losses due to flooding of shorebird nests. Successful nesting of turtles requires the availability of beaches and suitable soft, dry substrate near the water. River flow was also shown to influence the composition of river fish assemblages and the timing of fish migration between the lower river and the Estuary.

In the lower St. Lawrence River, wetland habitats and faunal species showed a strong response to the large interannual variations of water levels resulting from differences in water supply to the basin (1960-2001). However, in contrast to the situation in Lake Ontario, the sensitivity of individual performance indicators to different regulation plans in the lower river was small. The lesser sensitivity of performance indicators in the lower St. Lawrence River results from a combination of different factors:

1. Hydrological series used to simulate the effects of each regulation plan assume that the current state of infrastructures (shape and depth of the navigation channel, underwater structures, dams, river profile) and the current ice management regime do not vary over the entire time series, potentially underestimating the variance due to cumulative effects. Ecosystems are subjected to the cumulative impacts of all modifications to levels and flows, in terms of which, regulation plays a small, albeit significant, role.

2. Downstream of Montreal, the discharge from the Ottawa River and from other largely unregulated tributaries increases total discharge and induces additional variability (seasonal and event-related), which masks the signal from Lake Ontario outflow to some extent. The direct effect of Lake Ontario regulation becomes less evident as one moves downstream, as in the case of Lake Saint-Pierre, for which a number of performance indicators were developed.

Integration into the Shared Vision Model

The Environmental Technical Work Group worked closely with the Plan Formulation Technical Work Group in the development of the IERM to ensure that the IERM could be linked directly with the Shared Vision Model in its application. The hydraulic algorithms in the IERM were constructed to duplicate the hydraulic results generated by the SVM. Therefore, it was possible to verify the IERM hydraulic computations by directly comparing the results with the quarter-monthly water level and flow predictions generated by the SVM framework. When possible, verification of performance indicator results was conducted by developing detailed spreadsheet calculations that were intended to reproduce the IERM output for a given performance indicator. For some of the more complex sub-models, it was necessary to develop simplified spreadsheet calculations that could adequately reproduce the relative performance indicator response when two regulation plans were compared. Verification of the IERM sub-models was also achieved through an iterative process in which individual Environmental Technical Work Group researchers reviewed model results and provided feedback after each version of the IERM was released. Ultimately, a “stamp of approval” was obtained from each researcher with regard to implementation of their specific research in the IERM. For more information on the IERM and the validation process, refer to the Integrated Environmental Response Model documentation (Limno-Tech, 2005).
Participants

Environmental Technical Work Group

<table>
<thead>
<tr>
<th>Name</th>
<th>Position/Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joseph Atkinson</td>
<td>SUNY at Buffalo, NY</td>
</tr>
<tr>
<td>André Talbot</td>
<td>Environment Canada, Montreal, Quebec</td>
</tr>
<tr>
<td>Jeff Watson</td>
<td>Canadian Secretariat, Ottawa, Ontario</td>
</tr>
<tr>
<td>Brad Parker</td>
<td>Canadian Secretariat, Ottawa, Ontario</td>
</tr>
<tr>
<td>Christiane Hudon</td>
<td>Environment Canada, Montreal, Quebec</td>
</tr>
<tr>
<td>Mark Bain</td>
<td>Cornell University, Ithaca, NY</td>
</tr>
<tr>
<td>James Haynes</td>
<td>SUNY College at Brockport, NY</td>
</tr>
<tr>
<td>Sandra Bonanno</td>
<td>The Nature Conservancy, NY</td>
</tr>
<tr>
<td>John Barko</td>
<td>U.S. Army Corps of Engineers, Vicksburg, MS</td>
</tr>
<tr>
<td>Albert Schiavone</td>
<td>NYS Department of Environmental Conservation</td>
</tr>
<tr>
<td>Steve LaPan</td>
<td>NYS Department of Environmental Conservation</td>
</tr>
<tr>
<td>Doran Mason</td>
<td>Great Lakes Environmental Research Laboratory</td>
</tr>
<tr>
<td>Jack Davis</td>
<td>U.S. Army Corps of Engineers, Vicksburg, MS</td>
</tr>
<tr>
<td>Douglas Wilcox</td>
<td>USGS Great Lakes Science Center, Ann Arbor, MI</td>
</tr>
<tr>
<td>Ken Minns</td>
<td>Fisheries & Oceans Canada, Burlington, Ontario</td>
</tr>
<tr>
<td>Jack Manno</td>
<td>SUNY College of Environmental Science & Forestry</td>
</tr>
<tr>
<td>Yves De Lafontaine</td>
<td>Haudenosaunce EnV’1 Task Force, Hogansburg, NY</td>
</tr>
<tr>
<td>Marc Mingelbier</td>
<td>Ressources naturelles et Faune, Quebec City, QC</td>
</tr>
<tr>
<td>Nancy Patterson</td>
<td>Environment Canada, Downsview, Ontario</td>
</tr>
<tr>
<td>Joel Ingram</td>
<td>Environment Canada, Downsview, Ontario</td>
</tr>
<tr>
<td>Jeff Ridal</td>
<td>St. Lawrence Institute, Cornwall, Ontario</td>
</tr>
<tr>
<td>Tom Stewart</td>
<td>Ontario Ministry of Natural Resources, Picton, ON</td>
</tr>
<tr>
<td>Denis Lehoux</td>
<td>Environment Canada, Ste-Foy, Quebec</td>
</tr>
<tr>
<td>Joe DePinto</td>
<td>Linno Tech, Incorporated</td>
</tr>
<tr>
<td>Todd Redder</td>
<td>Linno Tech, Incorporated</td>
</tr>
<tr>
<td>John Farrell</td>
<td>SUNY College of Environmental Science & Forestry</td>
</tr>
<tr>
<td>James Gibbs</td>
<td>SUNY College of Environmental Science & Forestry</td>
</tr>
<tr>
<td>Donald Leopold</td>
<td>SUNY College of Environmental Science & Forestry</td>
</tr>
<tr>
<td>Maxine Cole</td>
<td>Akwesasne Task Force for Env’t, Hogansburg, NY</td>
</tr>
<tr>
<td>Joyce Barkley</td>
<td>Akwesasne Task Force for Env’t, Hogansburg, NY</td>
</tr>
<tr>
<td>James Johnson</td>
<td>U.S. Geological Survey, Tunison Lab, Cortland, NY</td>
</tr>
<tr>
<td>James McKenna</td>
<td>U.S. Geological Survey, Tunison Lab, Cortland, NY</td>
</tr>
<tr>
<td>David Klein</td>
<td>The Nature Conservancy, Rochester, NY</td>
</tr>
<tr>
<td>Rob Read</td>
<td>Environment Canada, Burlington, Ontario</td>
</tr>
<tr>
<td>Jean-Luc DesGranges</td>
<td>Environment Canada, Canadian Wildlife Service,</td>
</tr>
<tr>
<td></td>
<td>Quebec Region, Ste-Foy, Quebec</td>
</tr>
<tr>
<td>Jean Morin</td>
<td>Environment Canada, Sainte-Foy, Quebec</td>
</tr>
<tr>
<td>Sue Doka</td>
<td>Fisheries and Oceans Canada, Burlington, Ontario</td>
</tr>
<tr>
<td>Sylvain Gigueré</td>
<td>Environment Canada, Canadian Wildlife Service,</td>
</tr>
<tr>
<td></td>
<td>Quebec Region, Ste-Foy, Quebec</td>
</tr>
<tr>
<td>Alain Armellin</td>
<td>Environment Canada, St. Lawrence Centre, Quebec Region,</td>
</tr>
<tr>
<td></td>
<td>Montreal, Quebec</td>
</tr>
<tr>
<td>Pierre Laporte</td>
<td>Environment Canada, Canadian Wildlife Service,</td>
</tr>
<tr>
<td></td>
<td>Quebec Region, Ste-Foy, Quebec</td>
</tr>
<tr>
<td>Bruno Drolet</td>
<td>Environment Canada, Canadian Wildlife Service,</td>
</tr>
<tr>
<td></td>
<td>Quebec Region, Ste-Foy, Quebec</td>
</tr>
<tr>
<td>Board Liaisons</td>
<td>U.S. Army Corps of Engineers, Fort Belvoir, VA</td>
</tr>
<tr>
<td>Gene Stakhiv</td>
<td>Canadian Secretariat, Burlington, Ontario</td>
</tr>
<tr>
<td>Doug Cuthbert</td>
<td>NYS Department of Environmental Conservation, NY</td>
</tr>
<tr>
<td>Sandy LeBarron</td>
<td>Parks Canada, Quebec City, Quebec</td>
</tr>
<tr>
<td>Lynn Cleary</td>
<td>Burlington, Ontario</td>
</tr>
<tr>
<td>PIAG Liaisons</td>
<td>Chicoutimi, Quebec</td>
</tr>
<tr>
<td>John Hall</td>
<td>Prescott, Ontario</td>
</tr>
<tr>
<td>Marc Hudon</td>
<td>Cornwall, Ontario</td>
</tr>
<tr>
<td>Sandra Lawn</td>
<td>Clayton, NY</td>
</tr>
<tr>
<td>Elaine Kennedy</td>
<td>Cornwall, Ontario</td>
</tr>
<tr>
<td>Stephanie Weiss</td>
<td>Clayton, NY</td>
</tr>
</tbody>
</table>
References

Brodeur, P., Mingelbier, M., Morin, J. Impact of Temperature and Water Discharge on Fish Reproduction in the Marshes of the St. Lawrence River, presented at the 11th Annual International Conference on the St. Lawrence River Ecosystem, St. Lawrence River Institute of Environmental Sciences, Cornwall, May 18-19, 2004.

De Lafontaine, Y, Marchand, F. Hydrological Fluctuations and Productivity of Freshwater Fish Species in the Lower St. Lawrence River., St. Lawrence Centre, Environment Canada, Montreal, Quebec.

Giguère, S., Laporte, P. Species at Risk in the Lower St. Lawrence River (Cornwall - Trois-Rivières). Environment Canada, Canadian Wildlife Service, Quebec Region.

Lantry, J., Schiavone, A. Impact of Water Level Management on Species-at-Risk In Lake Ontario and the Upper St. Lawrence River. New York State Department of Conservation, Watertown.

Lehoux, D., Dauphin, D. Impact of water level fluctuations on dabblers breeding within the Lake St. Louis and Lake St. Pierre area (critical thresholds) and final evaluation of performance indicators, Environment Canada, Canadian Wildlife Service, Quebec Region.

Morin, J., Turgeon, K., Champoux, O., Martin, S., Rioux, D. Modeling spatial distribution of submerged macrophytes of the St. Lawrence River. Environment Canada, Meteorological Service of Canada.

Turgeon, K., Champoux, O., Jean, M., Morin, J. Modelling Wetland Types of the St. Lawrence River Floodplain. Environment Canada, Meteorological Service of Canada and St. Lawrence Centre, Montreal.

A. Environmental Contextual Narrative

1. General Socio-economic Context

(a) Production value of the interest

Economic value is difficult to determine for environmental conditions, although social value may be evaluated in a qualitative sense. Replacement cost for loss of a resource (e.g., rebuilding a wetland), or possibly estimated impacts on ecotourism (including sport fishing) might be used to provide some idea of costs associated with ecosystem changes, but economic costs cannot account for impacts associated with loss of diversity or reduction in numbers of certain species, or other factors that might affect ecosystem health. Although difficult to quantify for the Lake Ontario–St. Lawrence system specifically, nationwide surveys have demonstrated strong support for a healthy and diverse environment, and the natural resources of the Great Lakes serve as a magnet for tourism in both the U.S. and Canada (NYSG 2004).

Coastal ecosystems offer diverse habitats that support a myriad of plant, fish, and wildlife species. The economy of many coastal areas is dependent on the recreational value of these habitats and the sport fishing, commercial fishing, hunting, bird-watching, swimming and hiking activities associated with them. Expenditures by large numbers of seasonal tourists on lodging, food, sporting goods, boat and vehicle rentals, gasoline, and personal items often represent the major source of income to coastal communities. The ecosystems that supply the fish, wildlife, and recreational facilities underlying that economy have been severely impacted by many human actions. Conversion of diverse wetland habitats to vast stands of cattails clearly represents one of the greatest impacts on the Lake Ontario coastal ecosystem and has been shown to be a direct response to water-level regulation.

Societal value is also expressed through laws protecting habitat (i.e., wetlands) and specific faunal species (special interest or endangered species). The ETWG assessment of the ecosystem response to alternative plans is built on an evaluation of key indicators of overall ecosystem diversity, productivity, and sustainability (see below).

(b) Number of stakeholders

Potential stakeholders include the over seven million people living in the Lake Ontario basin, as well as the more than four million living in the Montreal – Quebec City areas. In addition, there is a large sport fishing industry that attracts people from outside the area.

(c) Organizational characteristics

Stakeholders are relatively unevenly distributed around the shorelines of the Lake and River, with several large population centres (Toronto, Montreal, Rochester) and a number of smaller communities. For example, the majority of the Canadian population (about 60%) is concentrated in a narrow belt that represents 2.2% of the total land between Windsor, Ontario and Quebec City. The population density in 1996 along the Canadian portion of the lower St. Lawrence River ranges from 10 persons per square kilometre in the most natural areas to more than 3,800 persons square kilometre in the major cities (Toronto and Montreal). Much of the area bordering the water is low-density residential, agricultural or natural preserve. In addition to several government agencies and departments (e.g., Department of Environmental Conservation, Environmental Protection Agency, Environment Canada), a number of environmentally oriented groups are active in the area, including The Nature Conservancy, Ducks Unlimited, Trout Unlimited, Nature Conservancy of Canada, ZPI (Zones of Primary Intervention), Quebec Society for Wetland Conservation, Quebec Wildlife Federation, Save the River, the Thousand Islands Land Trust and other land trusts in the coastal zone of both countries, Federation of Ontario Naturalists, the charter boat sport fishing industry, and the Audubon Society. The Mohawk/St. Regis tribes also constitute a significant interest group on the upper St. Lawrence River.
(d) Values and perceptions of the interest

Environmental value is associated with shoreline properties, accessible and usable beaches, attractive wetlands, and the fauna they support. The economic importance of many fish, wildfowl and fur-bearing animals has long been recorded and is still important. However, the perception of ‘environment’ is variable depending on one’s ties to the watershed (i.e., by membership in naturalist groups, as an avid angler, commercial fisher or boater, as one who reads about nature, etc.). First Nation and tribal peoples have historical or traditional values and perceptions about the environment that transcend economic value, although this is not to say that they do not benefit economically from the environment, since they fish in the St. Lawrence River, Lake St. Francis and Lake Ontario.

Attaching an economic value to the maintenance of one’s values or perceptions of the watershed is, therefore, a difficult task. The concept of value holds, but obviously values vary, for both U.S. and Canadian citizens, as well as Aboriginal peoples.

(e) Significant statutory, regulatory and policy restrictions

There are 84 species of plants and animals in the Lake Ontario/upper St. Lawrence coastal zone that are sensitive to water level fluctuations and are being tracked as species of concern by the Natural Heritage Program in New York and the Natural Heritage Information Centre in Ontario. Thirty of these species are officially designated by state, provincial, or federal authority as threatened or endangered. In the U.S., the barrier beach ecosystem of eastern Lake Ontario has been designated by the U.S. Fish and Wildlife Service as critical recovery habitat for the endangered piping plover (Charadrius melodus). In the lower St. Lawrence River (Quebec section), there are 13 special concern, vulnerable, threatened and/or endangered species impacted by water level regulation (according to the Centre de Données sur le Patrimoine Naturel du Québec - CDPNQ) that are protected under federal or provincial laws: the Species at Risk Act (Bill C-5) at the federal level, and the Loi sur les espèces menacées et vulnérables and the Loi sur la conservation et la mise en valeur de la faune at the provincial level. Laws and regulations protecting special interest species are likely to change over time, and any actions that might affect these species must be evaluated within those laws. In addition, species such as the muskrat have special significance to certain segments of the population and have taken on special importance even though specific laws protecting them are limited to harvesting seasons. It should be noted that the IJC is not obligated to follow or abide by the laws and regulations that protect species; however, it is probably in the Commission’s best interest to consider them and the impacts on species-at-risk when choosing a water level regulation plan.

Regulations protecting species or even simply the passage of fish (see section 35 of Canada’s Fisheries Act) may influence watershed management, as well as court decisions relating to Aboriginal treaty rights and jurisdiction or territory.

(f) History of the interest

Much information is available on this subject, some alluded to in responses to other questions here, but it is impractical to cover such a history in this document.

(g) Trade flows and current market conditions (This is not relevant to ETWG.)

(h) Effect of last high or low water conditions

These high and low water conditions represent natural events and are important factors in maintaining wetland and biological diversity over the long term (Wilcox 1989, 1990, 1993; Wilcox et al. 1992, 1993; Wilcox and Meeker 1995).

Intensive plant community surveys within coastal wetlands representative of the Study area confirm previous conclusions that the distribution of plant communities in Lake Ontario—upper St. Lawrence River coastal wetlands is highly correlated with water-level history (Wilcox et al., 1992). The wetland plant community type observed at specific elevations was consistent among sites within and across the wetland geomorphic
types. Analyses of historical aerial photographs also confirm that plant communities have responded to interannual water-level cycles, with communities shifting up- and down-slope, based upon hydrologic preferences, during high and low water-level cycles, respectively.

2. **Performance Indicators**

A table of “key” performance indicators (PIs), as well as their significance, uncertainty and sensitivity (to water level and flow regulation), is presented earlier in the Environment Technical Work Group Summary. This list has been distilled from an original list of over 400 proposed PIs. The process of reducing the larger list to the key PI list involved eliminating certain PIs that were determined to be either too uncertain or to be insensitive to water level variations, and grouping PIs that behaved similarly in response to water level. Thus, one key PI may in fact represent the response of many other PIs from the original list. The importance of a particular key PI in the final evaluation will depend in part on the number of other PIs it is representing. In general, the wetland vegetation PI is most closely linked to water levels and there is strong substantiation for it based on study design. Other key PIs are also directly sensitive to water levels or flows, or are linked to water levels through habitat responses correlated with the wetland PI. The high sensitivity indices in the table should be noted as an indication of the relative role played by water levels and flows in controlling these PI responses.

3. **Potentially Significant Benefit Categories Not Addressed by the Current Performance Indicators (Secondary Impacts)**

Secondary impacts on ecotourism, including such activities as bird-watching, fishing and hunting, are not directly incorporated in the current PIs (also see response to 1a above).

4. **Key Baseline Conditions**

In terms of general ecosystem response, the main baseline condition is the pre-regulation, or “natural” state, which represents the best condition for the ecosystem (see also response for #5, Key Trends). The other baseline used by ETWG for comparison purposes is the current regulation plan, which is considered a reference condition against which changes in PIs for alternative plans are to be evaluated. The main goal of the ETWG is to establish a regulation plan that improves ecosystem response, relative to the current plan, and at worst causes no degradation of environmental response. The main tool used to assess different plans within the ETWG is the Integrated Ecological Response Model (IERM), which is designed to facilitate comparisons among plans.

5. **Key Trends**

Possible changes in temperature and/or climate in general, and water supply specifically, would affect the environmental response. In addition, issues such as invasive species, changes in fisheries management, pollution and population changes (in numbers and/or distribution), or changes in use of the resource may also impact the environment. Thirty-year cycles in water levels, embedded within 150-year cycles, have been documented for Lake Michigan by Baedke and Thompson (2000), and 15-30 year cycles can be seen in the hydrographs for all the lakes, including Lake Ontario prior to regulation. Thus, the baseline condition is not static; rather, it is controlled by the natural cycles of variation. If “baseline” is taken to mean pre-project conditions, then it should be recognized that Plan 58-D was implemented at a time of low supplies, which then rose over the following three decades to historical highs. These natural variations in supply are difficult to predict, though they obviously have an impact on the environmental response. It might also be noted that various climate change scenarios predict generally drier conditions, with corresponding lower supplies. The IERM is not designed as a full ecosystem response model since it does not take into account the above issues, which certainly affect the ecology of the system. In keeping with the constraints of the present study, the IERM (and the PIs defined by ETWG researchers) focuses on those changes in the ecosystem that are related to water level and flow variations.
6. Expected Consequences of Changes of Regulation

The worst consequence would be the elimination of a species, particularly one that might be endangered or of special interest. In Canada there is a “no net loss” principal for wetlands (and fish habitat in general), so any deliberate change in water regulation would have to consider possible mitigation actions, such as wetland or shoreline habitat restoration. In general, changes in water regulation are expected to have an impact on distribution and abundance of different wetland types, thus affecting habitat suitability and eventually the populations of different indicator species.

Study results indicate that moderation of water-level fluctuations under water regulation has significantly restricted the long-term hydrologic environment important to the maintenance of coastal wetland meadow marsh communities. Moderation of long-term water-level fluctuations has also created hydrologic conditions that have supported the expansion of aggressive, dominant emergent and submergent plant species, resulting in a reduction of plant species richness and emergent marsh habitat quality. It is likely that the reduction in habitat quality has also been influenced and magnified in wetlands that have been impacted by increased nutrient and sediment inputs attributable to surrounding land uses. However, intensive surveys and historical aerial photo evaluations provide very similar results across all of the study sites, including sites with largely natural (forested) watersheds. The consistency in study results supports the conclusion that water-level moderation through water regulation is having a major impact on coastal wetland habitat quality.

7. Adaptive Behaviours

“Adaptive Behaviours,” as defined here, are not relevant for ETWG, since it is the ecosystem that will change in response to changes in water levels and flows. Such behavior is already incorporated in PI responses in the IERM.

8. Risk Assessment/Sensitivity Analysis

Information serving as the basis for the IERM and SVM algorithms used to assess the environmental response to hydrologic change has been gathered largely through field studies and literature reviews. The field studies have a duration of two or three years at most, although several studies were designed to evaluate the response to lake-level changes dating from pre-regulation, and there is uncertainty associated with extrapolating the environmental response to a 50- or 100-year hydrologic sequence. In addition, the environmental response is sensitive to longer-term sequences in the hydrologic record (i.e., not just what is happening in one particular year or season), and those types of relationships are more difficult to incorporate in the SVM framework. As previously mentioned, the current evaluation framework does not account for factors external to the study (e.g., changes in water quality, global warming, invasive species, land use, fisheries management practices, etc.) that might impact the environment. Recognizing that uncertainty about outcomes is a constant feature of the management of complex and dynamic ecosystems such as Lake Ontario/St. Lawrence, and also that the mathematical relationships used by the IERM and SVM to predict outcomes are hypotheses based on a limited period (several years) of research, it has been proposed that a new management plan be adaptive in its implementation. Such an adaptive management approach brings a systematic process that involves learning from the outcomes of operational actions to continually improve management—for all the interests.

Extensive evaluations of sensitivity of PIs to water level and flow regulation have been carried out, and results are summarized in the key PI table above. As previously noted, one of the criteria used to determine the key PI list was sensitivity, and, although many of the initially defined PIs were not as sensitive, all the key PIs have a sensitivity ranking of 4 or 5 (on a 5 point scale). Details of these rankings may be found in the individual PI descriptions included in the IERM documentation (Limno Tech Inc., 2005).
9. References

Listed in text

New York Sea Grant Extension Service (2004) Personal communication, Helen Domske, Senior Extension Specialist.

General background information

Lake Ontario LaMP reports (various years).

Natural Heritage Information Centre, Ontario.

10. Review Process

Author: Joe Atkinson
Reviewed by: Jeff Watson
Received TWG support: Not reviewed
External review: N/A
B. Recreational Boating and Tourism Technical Work Group Summary

Objectives

The Recreational Boating and Tourism Technical Work Group was charged with developing: (1) a general assessment of the impact of recreational boating on the study area, (2) performance indicators that would show the effects of changing water levels on recreational boating and tourism interests, and (3) ideal criteria for water levels that would best meet the needs of recreational boaters and associated businesses.

Data Collection and Evaluation Methodology

A three-pronged approach was developed, with each approach involving a different group and a different method of assessing the impacts of water level changes. The members of the first group, recreational boaters, were surveyed by phone to determine their use of Lake Ontario and the St. Lawrence River, then by mail for specific information about expenditures and the impacts of high and low water levels on their use of the area. Those in the second group, marina and yacht club owners, were contacted in person and by phone to assess the impacts of fluctuating water levels and to obtain physical measurements of depths at slips and boat launching facilities. The third group, charter and tour boat operators, was surveyed by mail and phone to assess the impacts of fluctuating water levels on such businesses. All data was collected in 2002 and 2003.

For recreational boaters, a sample of 10,382 U.S. boat owners was drawn from boats registered in the eight counties bordering Lake Ontario and the St. Lawrence River, using only boats in the “pleasure boat” category with non-commercial addresses. The sample was stratified by boat length and by geographic region. Boaters were contacted by telephone to determine if they had boated on Lake Ontario or the St. Lawrence River in 2002. If they had, they were sent a mail questionnaire asking them more detailed questions about their boating experiences and expenditures.

In Canada, a list of registered boats was not available. Therefore, a telephone survey of the general population living in the study area was conducted to determine the number of boaters using study waters in 2002. However, not enough boaters could be obtained by this method to permit a more detailed mail survey. Instead, a mail survey was sent to Canadian Power Squadron members living in the study area to obtain the more detailed information about boating experiences and expenditures. The questionnaire was the same as the one used in the U.S. However, this group was considered representative not of all Canadian boaters, but of only those using marinas and yacht clubs. To estimate performance indicators for boat launch ramp users and private dock owners, ratios developed from U.S. data (e.g., days boated by marina users/days boated by launch ramp users) were applied to the Canadian power squadron data.

In the case of marina and yacht club owners, an inventory of all marinas, yacht clubs, and state/provincial or privately run boat launch ramps was conducted during the summer of 2002. In personal interviews conducted by field staff, services provided at each marina and yacht club were inventoried. Operators were asked about impacts to their business from both high and low water conditions, the cost of those actions taken to mitigate, and whether any revenue was lost. Depth measurements were taken at selected slips and launching facilities and used to determine the point at which the slip or launch ramp could not be used and thus when benefits would be lost.
In the case of charter and tour boat operators, a survey of charter boat captains was conducted in January and February of 2003 on the U.S. side, while Canada conducted a tour boat and excursion craft operator survey. The questionnaires surveyed business characteristics, economics, trips taken and educational information needs, and included specific questions about launching sites, problems with low or high water conditions and the costs associated with adaptations made in response to changing water levels.

Depth measurements taken at marinas, private docks, and boat launch ramps were standardized to the gauges within their respective reaches. For the Lake Ontario Reach, which includes the Lake itself and the portion of the St. Lawrence River up to and including Cape Vincent, the standardizing gauge was the one closest to the measurement location. The remainder of the upper St. Lawrence River was divided into three reaches associated with the water level gauge measurements at Alexandria Bay, Ogdensburg and Long Sault. The three reaches on the lower St. Lawrence River were referenced to the following water level gauges: Pointe Claire for Lac St. Louis, Sorel for Lac St. Pierre, and Varennes for Montreal-Contrecoeur.

Originally there were only two reaches for the upper St. Lawrence River. However, it was realized that the slope of the upper St. Lawrence River and the impact of releases from Moses-Saunders Dam on water levels just above the dam were too great to base levels on just two river gauges. As a result, the old Ogdensburg reach that had stretched from Chippewa Bay to the dam was split into two reaches: a New Ogdensburg reach–Chippewa Bay to Iroquois Dam and a new Lake St. Lawrence Reach–Iroquois Dam to Moses Saunders Dam. Figure B-1 shows the seven reaches in the study area.

Performance Indicators

The Recreational Boating Technical Work Group focused on two performance indicators: total possible boating days lost and net economic value lost (willingness-to-pay). These measures provide an estimate of both recreational loss and economic loss as water levels change. The economic measure was chosen by the economic advisors to the Study Board to be most comparable to measures used by other technical work groups, and was used by the Study Board when comparing impacts among different interest groups. The Recreational Boating Work Group developed estimates of days boated and net economic value by water reach, country (U.S. or Canada), water access method (private dock, marina, launch ramp, charter boat), boat type (sail or power), and boat length class. Net economic value was estimated based on boat owners’ willingness-to-pay for boating over and above what they are already paying. Net economic value was calculated on a per-day basis. The average value was multiplied by days boated per month unconstrained by water levels. The number of days unconstrained by water level was the sum of actual days boated in 2002 plus boaters’ estimates of days that would have been boated if water levels were not a problem.
In addition to recreational boating, this technical work group was requested to examine “boating-related tourism” to further include the economic impact of boaters’ expenditures on sub-regions of the Lake Ontario–St. Lawrence River study area, so that the total community and regional impacts of fluctuating water levels on boating could be estimated. To make these estimates of economic impact, a computerized input-output economic model called Impact Analysis and PLANning (IMPLAN) was used. This model estimates the technical relationships between the producing sectors of the economy (inputs) and the consuming sectors (outputs). However, the economic advisors to the study recommended that the tourism-related IMPLAN results not be used because they were not comparable with measures used by other interest groups. The results of the tourism analysis provided by IMPLAN are presented in the Recreational Boating and Tourism Contextual Narrative and the final report of the Technical Work Group (Connelly et al., 2005).

Baseline Economics

Based on the studies undertaken by the Recreational Boating Work Group, it is estimated that recreational boaters in the U.S. and Canada spent $429.7 million (in U.S. dollars, 2002 currency rate) on boating-related trips to Lake Ontario and the St. Lawrence River in 2002. These expenditures are exclusive of additional en route expenditures that occurred in areas that do not border the study region. Furthermore, U.S. and Canadian boaters received a net benefit or consumer surplus of approximately $278.5 million in 2002. This consumer surplus represents the difference between boaters’ expressed valuation of their recreational experiences and their expenditures. Consumer surplus is a standard metric used in economics to measure the net value of recreational opportunities.

The economic baseline provides the context against which damages can be assessed. It gives an indication of the relevance of the damages to a particular interest. In essence, the economic baseline provides the denominator of the equation, allowing percent damages to be reported. The economic advisors suggested the baseline for recreational boating was net economic value as measured in 2002 (the most recent year available with plan 1958-DD in operation). The total baseline number covering Lake Ontario and the St. Lawrence River was $278.5 million (in 2002 U.S. dollars). Per reach, the following baselines apply:

Analysis

As discussed in the final report of the Technical Work Group, performance indicators (total possible days boated and net economic value) were linked to depth measurements at marinas and yacht clubs, boat launch ramps, and private docks to create water level–impact relationships (Connelly et al., 2005). A water level at which a boat would touch bottom (i.e., become grounded) or a depth of less than 2 ft at the end of a launch ramp was considered unusable, and all values associated with boats at such water levels were assumed lost until the water level rose again. At marinas and yacht clubs, the water level at which non-floating docks became inundated with water was also a point at which days or economic value would be considered lost until the water level dropped. We were unable to measure inundation at boat launch ramps or private docks.

U.S. and Canadian performance indicators were aggregated by reach for Lake Ontario and the upper St. Lawrence River. The lower St. Lawrence River is wholly within Canada and thus, no aggregation was required. Water level-impact relationships were developed for seven reaches. Economic indicators measured in dollars were all converted to 2002 U.S. dollar equivalents.

<table>
<thead>
<tr>
<th>Table B-1: Economic Baselines for Recreational Boating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recreational Boating: $278,450,000</td>
</tr>
<tr>
<td>Above Dam:</td>
</tr>
<tr>
<td>Lake Ontario: $239,200,000</td>
</tr>
<tr>
<td>Alex Bay: $174,070,000</td>
</tr>
<tr>
<td>Ogdensburg: $46,130,000</td>
</tr>
<tr>
<td>Lake St. Lawrence: $10,450,000</td>
</tr>
<tr>
<td>Below Dam:</td>
</tr>
<tr>
<td>Lac St. Louis: $8,550,000</td>
</tr>
<tr>
<td>Montreal/Contrecoeur: $39,250,000</td>
</tr>
<tr>
<td>Montreal/Contrecoeur: $17,830,000</td>
</tr>
<tr>
<td>Lake St. Pierre: $12,060,000</td>
</tr>
<tr>
<td>Montreal/Contrecoeur: $9,360,000</td>
</tr>
</tbody>
</table>

Options for Managing Lake Ontario and St. Lawrence River Water Levels and Flows
Figures B-2 to B-8 depict the net economic value lost (willingness-to-pay) by month on the seven reaches. Corresponding figures showing total possible boating days lost are provided in the Recreational Boating Technical Work Group Final Report (Connelly et al., 2005); Lake St. Lawrence and Ogdensburg, which had not been divided at the time the Report was finalized, are omitted. Essentially, the graphs represent a stage-damage curve for the recreational boating interest. Each line represents net economic value lost during a different month of the boating season. The graphs show that impacts of lower water levels are greater in the summer months of July and August than the early spring or fall months. Lake Ontario Reach users (Fig. B2) start to experience losses when water levels drop below 75.28 m (247 ft). Losses increase as water levels drop and the increase becomes dramatic below 74.62 m (244.8 ft). As water levels drop, economic losses increase because boats cannot launch or become grounded at their slips. Approximately $7.5 million in economic benefits would be lost if the water level were 74.37 m (244.0 ft) for the entire month of August.

Low water levels that cause significant losses of benefits affect the three boating segments somewhat differently (marina users, launch ramp users, and private dock owners). The larger boats tend to be located at marinas. Low water levels during the boating season may keep the owners of these boats from boating. If low water levels are predicted for fall, this may require marinas to haul boats out of the water early, thus shortening the boating season. Launch ramp users have more flexibility. If low water levels are a very localized problem for a given launch ramp, boaters may be able to shift to another ramp. In the case of more pervasive low water levels, launch ramp users may shift to other waters (e.g., Lake Champlain, Finger Lakes in New York). In the short term, private dock users lose boating benefits, as their boats are associated with primary residences or second home properties, and they have less flexibility to seek alternative places to boat.

For the upper St. Lawrence River - Alexandria Bay Reach, there appear to be no water levels without any impacts for boaters (Fig. B3). A few boaters experience problems with low water at the same time as other boaters are experiencing problems with high water. The least amount of impact appears to occur between 74.68 m (245 ft) and 75.35 m (247.2 ft).

The Ogdensburg and Lake St. Lawrence reaches of the upper St. Lawrence River have fewer boaters than the other sections and consequently, estimated impacts are smaller. Impacts on the Ogdensburg Reach (Fig. B4) appear to be minimal above 74.19 m (243.4 ft). Impacts due to high water levels are quite small compared with low water impacts below 73.91 m (242.5 ft). On the Lake St. Lawrence Reach (Fig. B5), sharp thresholds appear to occur at 72.76 m (238.7 ft) on the low end, due to the loss of boat launch ramps, and 74.22 m (243.5 ft) on the high end, with a fairly broad tolerance range of about 1.5 m (5 ft) in between.

The range of acceptable water levels appears to be quite large for all lower St. Lawrence River boaters (figs. B6 through B8). A possible acceptable range for the Lac St. Louis Reach is 21 m (68.9 ft) to 22.5 m (73.8 ft) (Fig. B6). For the Montreal-Contrecoeur Reach, a rather large range exists from 6 m (19.69 ft) to almost 10 m (32.81 ft) (Fig. B7). The range for Lac St. Pierre is the narrowest, at approximately 4.25 m (13.9 ft) to 5.25 m (17.2 ft) (Fig. B8).

Integration into the Shared Vision Model

The water level-impact relationship curves for the seven reaches were translated into impact tables using increasing water depths, at increments of one centimetre, and those impact columns were pasted into graphical converters in the STELLA portion of the Shared Vision Model and used in evaluating the historical economic benefits of alternative regulation plans relative to plan 1958-DD. The STELLA impact curves were also copied into Excel spreadsheets as stage-damage curves which could be used with stage frequency tables from the stochastic modeling results to calculate average annual impacts over 49,995 years. Completing the circle, these same “stochastic” tables were compared line by line with the original impact tables provided by the Recreational Boating Technical Work Group to earn the “stamp of approval” signifying that the Shared Vision Model had faithfully captured the research results.
Summary of Key Findings

Based on its work, the Technical Work Group estimated that recreational boaters in the U.S. and Canada spent $429.7 million on boating-related trips taken on Lake Ontario and the St. Lawrence River in 2002. These expenditures are exclusive of additional en route expenditures that occurred in areas that do not border the study region. U.S. and Canadian boaters received a net benefit or consumer surplus of approximately $278.5 million in 2002.

Based on comparisons with a 2003 New York Sea Grant-funded state-wide survey of boating in New York, U.S. study estimates of boating use and net benefits on the Lake and River are likely underestimated by as much as 36% (Connelly et al., 2004).

On the Canadian side, researchers were unable to obtain good depth measurements at boat launch ramps on Lake Ontario or the upper St. Lawrence River. Therefore, losses in net economic value for boaters in those areas are not included in the stage damage curves calculated for those reaches. Thus, the curves presented are conservative estimates.

Stage damage curves for low water levels may be conservative for two reasons: (1) some boaters will not want to risk damage to their boat or propeller without some safety margin (no safety margin was assumed), and (2) many marinas are located on inlets in situations where siltation occurs in the channel leading to the marina slips, and in some cases the depth at the slip is not the most shallow depth the boater faces in getting out to open water.

Of the $178 million in total expenditures on the U.S. side, US$68 million resulted from tourist-related spending (from boaters residing outside four groupings of counties along the New York border of these waters). After consideration of indirect effects, this tourist-related spending resulted in a total output of $96 million and 1,380 full-time equivalent jobs (Connelly et al., 2005). Based on a Canadian national survey, each dollar spent (direct expenses, net import) added another $1.50 through indirect and induced expenditures. Tourism activity was not measured in Canada, but the Toronto and Montreal areas generate substantial economic activity linked with commercial boating (e.g., tour boats). Based on the regional economic impact analysis completed on the U.S. side using IMPLAN, about two-thirds of the combination of indirect and induced employment impacts occurred in the Jefferson-St. Lawrence County region (northeastern Lake Ontario–St. Lawrence River). This sub-region is more dependent on boating-related tourism than other U.S. sub-regions and would likely be most strongly impacted if a significant number of boater days were lost due to high or low water levels.

The Technical Work Group reviewed the performance indicators depicted in figures B2-B8 and established a range of water levels which its members thought would be acceptable for the boating constituency overall and which is logically consistent between the Lake and upper river reaches. Consideration was given to developing a range of levels that not only minimized adverse impacts to boaters but that also provided a reasonable spread in consideration of regulation plan formulation. Table B-2 shows the ideal target level by reach along with the acceptable lower and upper bounds. It should be noted that these criteria were established before the Ogdensburg reach was divided into two reaches. New criteria were not established for the new reaches, because the work group had been disbanded by that time. Thus, the Ogdensburg criteria should be ignored in Table B-2.

During the boating season, the critical period for unacceptable water levels has historically occurred from late August through mid-October. Thus, the greatest incremental gains to recreational boating would be achieved if higher water levels could be attained during the fall.

Recreational boaters can tolerate certain water level variation without major damages, but they asked to be informed whenever rapid flows or levels change.
Table B-2: Ideal Criteria for Water Levels by Reach for Recreational Boating Interests for the Boating Season 15 April through 15 October. (Chart datum is shown for reference.)*

<table>
<thead>
<tr>
<th>Study Reach</th>
<th>Chart Datum</th>
<th>Ideal Level</th>
<th>Minimum Level</th>
<th>Maximum Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(ft)</td>
<td>(m)</td>
<td>(ft)</td>
<td>(m)</td>
</tr>
<tr>
<td>Lake Ontario</td>
<td>243.3</td>
<td>74.3</td>
<td>246.2</td>
<td>75.04</td>
</tr>
<tr>
<td>Alex Bay</td>
<td>243.0</td>
<td>74.1</td>
<td>245.8</td>
<td>74.92</td>
</tr>
<tr>
<td>Ogdensburg</td>
<td>242.5</td>
<td>73.9</td>
<td>245.1</td>
<td>74.70</td>
</tr>
<tr>
<td>Lac St. Louis</td>
<td>66.9</td>
<td>20.4</td>
<td>70.5</td>
<td>21.5</td>
</tr>
<tr>
<td>Lac St. Pierre</td>
<td>12.5</td>
<td>3.8</td>
<td>14.8</td>
<td>4.5</td>
</tr>
<tr>
<td>Montreal - Contrecoeur</td>
<td>15.7</td>
<td>4.8</td>
<td>21.3</td>
<td>6.5</td>
</tr>
</tbody>
</table>

* It should be noted that these criteria were established before the Ogdensburg reach was divided into two reaches. New criteria were not established for the new reaches, because the work group had been disbanded by that time. Thus, the Ogdensburg criteria should be ignored in Table B-2.

Figure B-2: Lake Ontario Reach
Figure B-3: Alexandria Bay Reach - Upper St. Lawrence River

Figure B-4: Ogdensburg Reach - Upper St. Lawrence River
(Only U.S. shown here, but both countries included in SVM calculations)

Figure B-5: Lake St. Lawrence Reach - Upper St. Lawrence River
(Only U.S. shown here, but both countries included in SVM calculations)
Figure B-6: Lac St. Louis Reach - Lower St. Lawrence River

Figure B-7: Montreal/Contrecœur Reach - Lower St. Lawrence River

Figure B-8: Lake St. Pierre Reach - Lower St. Lawrence River
Participants

Recreational Boating and Tourism Technical Work Group

<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jonathan Brown, U.S. Lead</td>
<td>U.S. Army Corps of Engineers, Buffalo, NY</td>
</tr>
<tr>
<td>Serge St-Martin, Cdn Lead</td>
<td>Mont-Saint-Hilaire, Quebec</td>
</tr>
<tr>
<td>Jean-Francois Bibeault, Cdn Lead</td>
<td>Environment Canada, Montreal, Quebec</td>
</tr>
<tr>
<td>Gary DeYoung</td>
<td>1000 Islands Regional Tourism Dev. Corp.</td>
</tr>
<tr>
<td>Al Donaldson</td>
<td>Ontario Marine Operations Assoc., Penetang, ON</td>
</tr>
<tr>
<td>Robert Petitpas</td>
<td>Garde cotiere auxiliaire canadienne, Sorel, Quebec</td>
</tr>
<tr>
<td>Jim Dike</td>
<td>Toronto Ontario Sailing Assoc., Scarborough, ON</td>
</tr>
<tr>
<td>Claire Lucchesi</td>
<td>Quebec Assoc. of Marine Industry, Montreal Quebec</td>
</tr>
<tr>
<td>David White</td>
<td>New York Sea Grant, Oswego, NY</td>
</tr>
<tr>
<td>David Orr</td>
<td>Gananoque, Ontario</td>
</tr>
<tr>
<td>Tommy L. Brown</td>
<td>Human Dimensions Research, Cornell U. Ithaca, NY</td>
</tr>
<tr>
<td>Nancy Connelly</td>
<td>Human Dimensions Research, Cornell U. Ithaca, NY</td>
</tr>
<tr>
<td>PIAG Liaisons</td>
<td></td>
</tr>
<tr>
<td>Rockne Burns</td>
<td>Tuscarora Construction Co. & Willow Shores Marina</td>
</tr>
<tr>
<td>Al Will</td>
<td>Hamilton, Ontario</td>
</tr>
<tr>
<td>Sandra Lawn</td>
<td>Prescott, Ontario</td>
</tr>
<tr>
<td>Tom McAuslan</td>
<td>Oswego, NY</td>
</tr>
<tr>
<td>Jon Montan</td>
<td>Canton, NY</td>
</tr>
<tr>
<td>Paul Webb</td>
<td>Brockville, Ontario</td>
</tr>
</tbody>
</table>

References

Recreational Boating and Tourism Technical Work Group (2005) Performance Indicator Summary: Net economic value lost by recreational boaters and charter boat patrons as water level varies from ideal levels for boating. Prepared for the Lake Ontario-St. Lawrence River Study Board. 6pp.
B. Recreational Boating and Tourism Contextual Narrative

1. General Socio-economic Context

(a) Production value of the interest

As a conservative estimate, recreational boaters in the U.S. and Canada spent $429.7 million on boating-related trips to Lake Ontario and the St. Lawrence River in 2002 (Connelly et al., 2005; Gardner Pinfold Consulting, 2003). These expenditures are exclusive of additional en route expenditures that occurred in areas that do not border the study region. They are also exclusive of other annual, but not trip-related expenditures made in the area ($133 million for Canadian boaters; not measured for US). U.S. and Canadian boaters received a net benefit or consumer surplus of approximately US$278.5 million in 2002.

(b) Numbers of stakeholders

Stakeholders include approximately 310,000 boaters (133,000 U.S., 177,000 CDN) and approximately 103,000 boat owners (44,000 U.S., 59,000 CDN) (Connelly et al., in review; Gardner Pinfold Consulting, 2003). Boating is very popular throughout the entire study area. Buffalo is within a few miles of western Lake Ontario and marinas located at the mouth of the Niagara River. Rochester and Toronto have large populations of boaters, some of whom boat locally, but many of whom travel east to more scenic areas along eastern Lake Ontario and the Thousand Islands where they may have summer homes, or where they can enjoy a different type of fishing (bass, muskellunge) than the salmonid fishing offered in Lake Ontario. In the lower river, a recent survey has also indicated a very large number of boat users all along the River (Duchesne et al., 2004). Additional stakeholders along the U.S. side alone include the owners of 166 marinas and yacht clubs (Connelly et al., 2002), 226 charter boat operators (Lichtkoppler and Kuehn, 2003), and a small number of tour boat operators. Also, the eight counties that border these waters have over 4,500 retail businesses (bait and sporting goods stores, gasoline service stations, restaurants and bars, lodging places, and other recreation and entertainment places) where boaters spend money (U.S. Bureau of the Census retail trade and services data). After consideration of indirect effects, tourist-related spending by boaters on the US. side resulted in a total output of 1,380 full-time equivalent jobs, as derived by IMPLAN analysis (Connelly et al., in review). Although comparable Canadian data are only available at the provincial level (see Goss Gilroy Inc., 2003), they are probably also very significant, considering that the riparian cities of Toronto and Montreal are the biggest cities in each province, together totalling more than eight million inhabitants.

(c) Organizational characteristics

Boaters in both the U.S. and Canada tend to be “empty nesters” (68% in the U.S.), with a mean age of about 55 and about 20 years of boating experience. They have above-average incomes as a group ($65,000 in the case of upstate New York boaters, compared with about $45,000 median household income state-wide) (Connelly et al., 2005). Average incomes of boaters in Canada are probably slightly lower (Gardner Pinfold Consulting, 2003). Although the mean income of boaters is above average, many middle income people participate in boating. Boaters on the lower St. Lawrence River often take trips of more than one day, going from the Lake to the River and vice-versa.

Marinas tend to be small businesses with low profit margins. This is in part because many marinas started as “mom-and-pop” businesses, whose owners typically do not have business degrees. Most marinas in the study area are several decades old, and at the time of construction, their owners may not have realized the extent of fluctuations in water levels over a broad time scale. Moreover, marinas can only operate in warm-weather months, and they face numerous risks peculiar to the industry (e.g., weather, quality of fishing from year to year, water levels), as well as economic conditions that affect all businesses (White, 1991; Noden and Brown, 1975). Profitable marinas tend to be larger, and in the lower river, the larger marinas are publicly owned and offer different services than the private sector (e.g., operations, maintenance) (Zins Beauchesne and Associates, 2002). Similar climatic and economic factors affect marinas and yacht clubs on both sides of the border.
Communities along New York waters vary from very rural areas (the case for the vast majority of the shoreline) to small cities (Oswego, Ogdensburg, and Massena), and finally to the metropolitan centre of Rochester. The Canadian shoreline of the St. Lawrence includes Montreal, Cornwall, and a number of villages; the Lake Ontario portion is largely rural except for Kingston and the western portion from Toronto to Hamilton. Rural communities along the shoreline are much less diversified economically and tend to have higher unemployment rates (7% to 9%, compared with 5% in Rochester based on New York state employment data), and they are much more dependent on tourism than larger urban areas. Rural portions of Lake Ontario and the Thousand Islands and Lac St. Pierre areas are heavily dependent on tourism, with harbours and locks along the River providing additional local attractions (Goss Gilroy Inc., 2003). Tourism is an important part of the economy in Toronto and Montreal as well.

(d) **Values and perceptions of the interest**

The primary interest and concern is in keeping water levels sufficiently high to allow boating. This is true for both marinas located in embayments along the Lake, and for marinas located on the upper and lower river. Extreme high or low water levels impact boating most strongly in July and August because that is when most boating occurs. However, assuming “normal conditions,” water levels are usually only a minor problem in a few localities in the summer. Thus, the greatest incremental gains to recreational boating would occur if higher water levels could be achieved during the fall (especially during September and October). This would significantly lengthen the boating season. In Canada, the boating season is generally about a month longer on the Lake than in the lower river (Zins Beauchesne, 2002; McCullough Associates and Diane Mackie and Associates, 2002).

(e) **Significant statutory, regulatory, and policy restrictions**

Because of topography, lack of road access, or sensitive environmental areas (e.g., wetlands), there are few places along the shoreline of the Lake and upper river where additional marinas could be constructed. Thus, in large part, any increase in the supply of marina slips has to be accomplished through more efficient use of space at existing marinas. This has been the case for perhaps 20 years; thus, it likely would be very difficult to increase the supply of slips significantly beyond the current number. In the lower river, substantial marina expansion occurred in the 1990s and again in 2002 with the re-opening of Lachine canal (Parks Canada, 2004). Water quality has improved in the lower river with the establishment of major sewage treatment plants. If funds were available, it would be possible to enhance the recreational boating network by improving the channel connection from Lac St. Louis to Lake St. Francis. Boaters must use commercial navigation locks, and frequently encounter waits of several hours, as priority is given to commercial shipping. Lock management could be an issue in this regard, however.

(f) **History of the interest**

Recreational boating has been popular in this area for most of the past century, and some older marinas were established in the 19th century (e.g., St. Lawrence Yacht Club and Club nautique de Longueuil). Early statistics are not available but by 1971, 395,000 boats were registered in New York (Noden and Brown, 1975), compared with 504,000 today. Boating in the study area has grown by a similar rate. Marina expansion has been limited, as noted above. However, with the introduction of salmon and trout into Lake Ontario in the 1970s, thousands of people from all over the Northeast trailerd their boats to the Lake. Several new boat ramps were constructed and the entryway to the Salmon River at Pulaski was improved. In the 1970s and 1980s, major dredging occurred on the Lake and at upper river marinas. Though this was not the case at lower river marinas, major connections have been reopened (e.g., the Lachine Canal) making links between the fluvial section (Varennes-Contrecoeur), Lac St. Pierre and Lac St. Louis. The St. Lawrence River, especially in the Thousand Islands area, is the location of thousands of second homes and cottages, many of which are undergoing conversion to year-round residences. Boating in conjunction with other summer activities has been a long tradition there. In addition, several state parks that provide boating access are located in the Thousand Islands area. In the lower river, the Lac St. Pierre area was
recently recognized as a UNESCO Biosphere Reserve, and the Sorel-Berthier Islands area is one of the oldest rural settlements in Canada (De Koninck, 1996). The Thousand Islands area has also recently been granted Biosphere status by UNESCO.

(g) Trade flows and current market conditions

Most of the recreational boating in western and central Lake Ontario is local, although there are significant numbers of boaters from other counties (Connelly et al., 1998). In the eastern Lake Ontario Basin and the St. Lawrence River counties, most boaters are tourists. Most boating tourists come from other regions of New York State, but many salmon anglers, especially in Oswego County, come from other northeastern states (Connelly et al., 1990). Current market conditions are generally steady, but are probably not increasing significantly. Except for climate conditions, gas price is probably the main factor that could change market conditions for boaters in the short run. For Canadian tourism, the dollar exchange rate (CDN-US$) can also have a huge impact. Terrorism and safety measures at borders are an inconvenience for boaters, but have not imposed a significant constraint on tourism. At the larger urban centres, most boaters are local, while in the Thousand Islands area, boating-related tourism is much more important (e.g., more than doubling the number of boaters in summer in the Gananoque area) (Thousand Islands International Tourism Council, 2002).

(h) Effect of last high or low water conditions

We have good data from marinas concerning only very recent high and low water periods. During those periods, a few marinas incurred significant losses, but the industry-wide impact was not large. Over the years, most of the marinas on Lake Ontario have installed floating docks, which ease problems in high-water situations. In the lower river, floating docks are the norm for marinas and yacht clubs, with very few exceptions. According to Canadian Coast Guard data, in low water years such as 1999, the number of accidents in the lower river increased, while accidents in other sectors (not having water level problems) were reduced (though water is not the only factor involved) (Canadian Coast Guard, 2001). Low water accidents are usually caused by rocks which, in high water, are deep enough to pass over safely. Low water often brings new boating hazards, undiscovered by neophytes until contact is made.

2. Performance Indicators

a1. Key performance indicator: Net economic value lost by recreational boaters and charter boat patrons as water level varies from ideal levels for boating.

a2. Key assumptions: On the U.S. side, we assumed that the population of boaters from which we drew our survey sample (those whose county of principal use as listed on their boating registration bordered the study area) included all boaters who used Lake Ontario and the St. Lawrence River. This was the only population from which a cost-efficient sample could be drawn. In 2003, New York Sea Grant funded a state-wide survey of boating in New York State that allowed us to estimate the magnitude of this conservative assumption. The results of the Sea Grant study showed that 36% of Lake Ontario or St. Lawrence River boaters listed a county away from the Lake or River as their county of principal use. The Sea Grant study did not ask willingness to pay, but at-site expenditures for boaters whose county of principal use borders the study area were similar to those of other boaters. This suggests that willingness to pay would be similar for the two groups. Thus, our U.S. estimates of boating use and net benefits on the Lake and River are likely underestimated by as much as 36% (Connelly et al., 2004). It is also possible that boats registered outside New York State were launched on the Lake or River. We inquired about non-NYS registered boats in our survey of marina operators (the most likely place where out-of-state boats would be berthed) and found them to be a very small percentage [<2%] of all boats.
On the Canadian side, a telephone survey of the general population living near the Lake and River was conducted to estimate the number of boaters. The survey area extended approximately 50 miles north of the Lake and River (Gardner Pinfold Consulting, 2003). We believe the number of boaters who come from outside the area surveyed is very small because the population outside the survey area is small and many other boating sites exist outside the survey area. We were unable to get good depth measurements at boat launch ramps on Lake Ontario or the upper St. Lawrence River. Therefore, net economic value lost for these boaters is not included in the stage damage curves calculated for those reaches. The curves presented are therefore conservative estimates.

The other major assumption is that boaters in fact behave in a manner consistent with the stage damage curves shown in our results. We do not have independent data from a year of high or low water to test this assumption (although other factors also affect participation). Thus, we have to examine the assumption deductively. Regarding boater behavior during low water levels, we took depth measurements at marinas and boat launch ramps and asked private dock owners for an estimated water depth on a particular day (Labor Day of 2002). These measurements, when merged with the depth requirements of boats of various sizes, incorporated no safety margin. Stage damage curves for low water levels may therefore be conservative for two reasons: (1) some boaters will not want to risk damage to their boat or propeller without some safety margin, and (2) many marinas are located on inlets in situations where siltation occurs in the channel leading to the marina slips, and in some cases the depth at the slip is not the most shallow depth the boater faces in reaching open water. Regarding high water levels, we assumed boater days were lost when fixed docks at marinas were inundated. Although no further measurements were taken, at many marinas, boats must pass under a bridge to reach open water, and at levels where docks are inundated, larger boats cannot fit under these bridges. We assumed boaters at launch ramps and private docks could boat at any high water level—a conservative assumption, because of the cost and logistics of obtaining such data.

Related to the above is the assumption that boaters do not move to another area during times of water level problems, and thus, once water levels hit certain low or high thresholds, all boating benefits are lost. We believe this is a safe assumption for private dock owners, whose boats are in the water at their sites and are thus closely tied to those sites. We also believe it is a safe assumption for boaters who use marinas on a year-to-year basis. We are aware of some cases in which boaters using marinas were forced to find substitute sites only for hauling out their boats (Boudier and Bibeault, 2001). Most marinas and yacht clubs charge an annual slip rental, which is paid in advance, making it unlikely that boaters will have their boats hauled out and moved other marinas (which may have no slip vacancies) mid-season. Boaters who trailer their boats and use launch ramps have more flexibility and may be able to move other facilities in low-water situations. However, they may lose the boating day when they assumed they would launch their boat, and water levels may affect nearby ramp facilities similarly.

Total possible days boated used to calculate the performance indicator was the sum of days boated in 2002 plus boaters’ estimates of the number of additional days they would have boated by month if water levels had been sufficient. The hypothetical nature of the estimate of additional days raises the possibility that boaters would not have gone boating on all of those days. Since they were being asked after the fact what they would have done, we can be more certain that days were constrained by water level and that the estimate of additional days is approximately accurate. The trend in boaters’ estimates of additional days follows the typical water level pattern, giving further credence to their estimates, with a few days lost in spring due to high water, no days lost in summer, and more days lost in fall due to low water. The estimate of total possible days boated used in calculating the performance indicator is therefore unconstrained by water levels.
Boaters were asked in the late fall of 2002 to recall the number of days they boated Lake Ontario or the St. Lawrence River by month for 2002 to date. Two types of bias could have affected their answers. One was response bias: respondents to the survey could have been more active boaters (boating more days) than non-respondents. We found this to be the case when we compared respondents and non-respondents’ answers to a screening interview question regarding days boated thus far in 2002. We accounted for this bias by reducing the estimate of total days boated by 4.7%. A second type of bias is memory recall bias. Respondents could have trouble recalling exactly how many days they had boated each month in 2002 by the fall of that year. Past research has shown a general trend toward overestimation of participation (Connelly et al., 2000). Although we tried to minimize this bias by sending out the questionnaires as soon as possible after the end of the boating season, we believe there is likely some overestimation.

We assumed no temporal substitution of boating days, i.e., that boaters facing water level problems would simply boat later in the year after these problems were alleviated. In times of frequent high water levels, this could occur to some extent in the case of resident boaters such as private dock owners. Much of the boating is tourism-related, however, and these boaters are not likely to realize until they reach their destination that water level problems exist. Thus, these trips and boater days are lost. In the case of low water conditions, the problems are exacerbated in late summer and fall, when water levels continue to decline gradually. Boating days lost at a particular time in late summer and fall have little opportunity for substitution later in the year.

There may be some exaggeration of data (e.g., boater days, expenses) for strategic reasons. Boaters were told that the information they provide would help the IJC manage water levels. However, the wording of the message in the cover letter and inside cover of the questionnaire was composed with care. Respondents were told the general purpose of the study and they were encouraged to participate, but we avoided language that suggests that recreational boating is competing against other interests or that high use and expenditure data would help recreational boating. We believe the effect of this potential bias is minimal.

b. Data limitations; fungibility of the performance indicators: Primary data limitations are covered above. Some assumptions or potential biasing elements likely cause slightly inflated estimates, while other assumptions and limitations, especially related to sampling, understate boating participation and therefore benefits. If anything, we believe that on balance, our estimates are slightly conservative. However, we do not believe the estimates seriously understate lost benefits.

The performance indicator of net benefits lost is based on willingness-to-pay data asked of boaters. This is the conceptually correct measure for comparing net benefits lost from recreational boating with net benefits lost from other sectors. Because of its hypothetical nature, this method is sometimes criticized. However, we used methods generally approved by resource economists and survey researchers to arrive at the most valid estimates possible. First, we defined and eliminated outlier estimates. Second, we asked if boaters provided an inflated estimate of willingness to pay in order to enhance the value (consumer surplus) of recreational boating. Those who responded affirmatively were assigned the mean value provided by other boaters (which was, on average, a reduced value) rather than the value they gave.

Considering various water level plans and possible ranking of those plans, we believe it is unlikely that changes in any of these assumptions would affect plan ranking for recreational boating. Changes in assumptions might affect the proportional loss for recreational boating as compared with other interests.
3. Potentially Significant Benefit Categories Not Addressed by the Current Performance Indicators (Secondary Impacts)

Of the $178 million in total expenditures on the U.S. side, $68 million resulted from tourist-related spending (by boaters residing outside four groupings of counties along the New York border of these waters). After consideration of indirect effects, this tourist-related spending resulted in a total output of $96 million and 1,380 full-time equivalent jobs (Connelly et al., in review). Based on a Canadian national survey, each dollar spent (direct expenses, net import) added another $1.50 through indirect and induced expenditures. Tourism activity was not measured in Canada, but the Toronto and Montreal areas generate substantial economic activity linked with commercial boating activities (e.g. tour boats). As an example, for 14 of 27 tour boat operators contacted, water-level-related loss of income between 1998 and 2002 was estimated at $727,000 (Gardner Pinfold Consulting, 2003).

Regional economic impact analysis was performed using IMPLAN to examine economic impacts attributable to boating in sub-regions of New York that result from new expenditures from boaters who were not residents of each sub-region. The four sub-regions, from west to east, were Niagara County (which is classified as part of the Buffalo Metropolitan Statistical Area [MSA]), Orleans-Monroe-Wayne Counties (much of the Rochester MSA), Cayuga-Oswego Counties (Oswego County is part of the Syracuse MSA), and Jefferson-St. Lawrence Counties, which are not part of an MSA.

The sales or output impacts and the employment impacts resulting from boater spending are shown in Table B-3. Over half of all tourist-related spending throughout the entire study area occurred in the Jefferson-St. Lawrence County region (northeastern Lake Ontario–St. Lawrence River), and about two-thirds of the combination of indirect and induced employment impacts occurred here. Within the U.S., this sub-region is most dependent on boating-related tourism and would likely be most strongly impacted if a significant number of boater days were lost due to high or low water levels.

The sales impact per boat day was calculated to facilitate construction of an additional water level–impact relationships and regional economic impact performance indicator. Because of (1) how the boater sample was drawn, (2) the various reaches of Lake Ontario and the St. Lawrence River, and (3) the similarity in economic impact data for central and western Lake Ontario, the three western sub-regions were merged to arrive at these estimates. As in the case of direct expenditures, aggregate sales impacts per boat day are highest (over $119 per day) in the eastern Lake Ontario–St. Lawrence River area.

Some notable points that can be derived from Table B-3, with further explanatory notes, are as follows:

1. The majority of the total economic impact (65% of sales and 59% of jobs) created from boater spending occurs in the Eastern Lake Ontario–St. Lawrence River sub-region. This region has a wealth of scenic and recreational resources, and tourism has historically been very important in this area (Connelly and Brown, 1988).

2. The overall output multipliers (Totals/Direct) are quite consistent across the four sub-regions and are only moderate in size, ranging from 1.37 for Cayuga-Oswego to 1.49 for Orleans-Monroe-Wayne.
4. Key Baseline Conditions

Boating is sensitive to economic conditions, but this probably applies more to the purchase of new boats and perhaps the type of boat purchased than to actual boating participation. A prolonged economic downturn or substantially higher fuel prices could dampen the growing demand for larger motorized boats and new boats, but these conditions likely would not have a great impact on boating participation. This is based on prior experience dating back to the 1970s; boating demand has not been estimated in the light of recent oil and gas price increases. During the energy crisis of the 1970s, people conserved fuel and took fewer long trips, but continued to boat.

5. Key Trends

Because of the price of new boats, boating has short-term fluctuations that mirror the general economy. We are currently seeing this, with sales on the increase since the fall of 2003, after a period of stagnation. Over a broader period, however, boating has increased in numbers, and boats have grown larger. Surveys show a growth of about 10% in the number of boaters between 1994 and 2002, and the U.S. Forest Service, which does long-term forecasting for a number of recreation activities, predicts a 21% increase in boating from 1995 to 2006. In the Quebec region, the number of boats (of all types) increased by 22% from 1995 to 2000, with the highest increases seen in motor boats under 20 feet (26%) and rowboats (22%) (Fisheries and Oceans Canada, 2004). Sailboats of more than 20 feet have also increased by 12%. On the St. Lawrence River (lower section), between 1995 and 2002, use of power boats and rowboats has increased, but use of sailboats has decreased (Duchesne et al., 2004). Although difficult to forecast precisely, it is likely that the number of boats will increase on the St. Lawrence River (lower river, at least) in the coming years.

Table B-3: Output and Employment Estimates from Spending by Recreational Boaters on the New York Portion of Lake Ontario and the St. Lawrence River in 2002, by Coastal Region

<table>
<thead>
<tr>
<th>Coastal Impact Area</th>
<th>Direct</th>
<th>Indirect</th>
<th>Induced</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aggregate Sales Impacts (000s of U.S. dollars)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Niagara</td>
<td>2,048</td>
<td>438</td>
<td>432</td>
<td>2,919</td>
</tr>
<tr>
<td>Orleans-Monroe-Wayne</td>
<td>1,537</td>
<td>347</td>
<td>402</td>
<td>2,286</td>
</tr>
<tr>
<td>Cayuga-Oswego</td>
<td>20,496</td>
<td>3,172</td>
<td>4,503</td>
<td>28,171</td>
</tr>
<tr>
<td>Jefferson-St. Lawrence</td>
<td>43,464</td>
<td>11,841</td>
<td>7,749</td>
<td>63,055</td>
</tr>
<tr>
<td>Totals</td>
<td>67,545</td>
<td>15,798</td>
<td>13,087</td>
<td>96,431</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sales Impacts per Boat Day</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Region-wide</td>
<td>$51.95</td>
<td>$12.15</td>
<td>$10.06</td>
<td>$74.16</td>
</tr>
<tr>
<td>Niagara to Oswego</td>
<td>31.24</td>
<td>5.13</td>
<td>6.92</td>
<td>43.30</td>
</tr>
<tr>
<td>Jefferson-St. Lawrence</td>
<td>82.33</td>
<td>22.43</td>
<td>14.68</td>
<td>119.44</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aggregate Employment Impacts (Full-time equivalent jobs)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Niagara</td>
<td>$35.3</td>
<td>$4.1</td>
<td>$5.4</td>
<td>$48.7</td>
</tr>
<tr>
<td>Orleans-Monroe-Wayne</td>
<td>25.2</td>
<td>2.9</td>
<td>4.2</td>
<td>32.3</td>
</tr>
<tr>
<td>Cayuga-Oswego</td>
<td>392.2</td>
<td>30.5</td>
<td>58.0</td>
<td>480.7</td>
</tr>
<tr>
<td>Jefferson-St. Lawrence</td>
<td>597.1</td>
<td>124.9</td>
<td>97.0</td>
<td>819.0</td>
</tr>
<tr>
<td>Totals</td>
<td>1,049.8</td>
<td>162.4</td>
<td>164.6</td>
<td>1,380.7</td>
</tr>
</tbody>
</table>

1 IMPLAN-defined jobs have been converted to full-time equivalents (40 hours per week) using Bureau of Labor Statistics data. These data indicate that the typical retail and hospitality job is approximately 30.8 hours per week. Thus IMPLAN data were weighted by a factor of 0.77 to arrive at estimates in full-time equivalents.
The average horsepower of motor boats increased from 65 hp in 1985 to 86 hp in 2002 in the U.S., and this trend is probably similar in Canada. Also, the 1990s brought the emergence of “cigarette” boats that travel at more than 60 mph on the lower river. We expect continued slow growth in boating, with also a trend toward slightly larger boats where we find higher water levels conditions. These larger boats will have slightly deeper depths, on average, which means low water levels will pose an increasing problem, although at a gradual rate. Jet skis and personal watercraft have appeared within the past 15 years and the number of users has grown substantially. This segment of boating is less affected by water levels, however.

6. Expected Consequences of Changes of Regulation

Based on previous experience, boaters are loyal to boating. In times of economic difficulties nationally, or at times of higher fuel prices, they make adjustments within the activity of boating; they do not change from boating to some other outdoor activity. Thus, it is difficult to imagine a scenario in the future where there would be fewer boaters. As a result, water levels would remain a critical concern to boaters. Adaptation measures could also be adopted (in part) by marina operators, but safety considerations and boater education/training will remain an issue (i.e. development of better ability to navigate when facing adverse conditions linked with climate and water levels).

7. Adaptive Behaviours

Many marinas have adapted to upward fluctuating water levels through the construction of floating docks. For this reason, high water levels are less of a problem for recreational boating than low water levels. Some smaller marinas still have not gone to the expense of installing floating docks, however. Low water levels are more difficult for marinas to adapt to because, for generalized low water, there is no obvious solution, and for specific situations, dredging may be required; this may take a year or two because of both costs and the difficulty of obtaining the necessary permits. Small boat owners who are fishing or water-skiing may be able to adjust over time by going to an inland lake or river. However, many boaters have specific interests in Lake Ontario or the St. Lawrence River because of waterfront properties or other interests.

Over a period of several years, boaters might adapt to low water conditions by buying smaller boats with shallower drafts. In the short term, they would probably simply boat less, going only in late spring and early summer when water levels are highest. Marina owners are less flexible. We believe that in a three-year period of low water levels, perhaps one-quarter to one-third of marinas would go out of business (based on limited in-depth survey information from Boudier and Bibeault, 2001).

8. Risk Assessment/Sensitivity Analysis

(See also adaptive behaviours above.) The primary risk we would identify is associated with water levels that are below the critical levels of the stage damage curves. Low water levels at which significant losses of benefits occur affect three boating segments somewhat differently—marina users, launch ramp users, and private dock owners. The larger boats tend to be located at marinas. Low water levels during the boating season may keep boaters from boating. If low water levels are predicted for fall, this may require marinas to haul boats out of the water early, thus shortening the boating season and threatening the economic viability of the marinas. Launch ramp users have more flexibility. If low water levels are a very localized problem for a given launch ramp, boaters may be able to shift to another ramp or launch at a marina. For more pervasive low water levels, launch ramp users may shift to other waters (e.g., Lake Champlain, Finger Lakes in New York, regulated St. Francis in Quebec). In the short term, private dock users would probably lose boating benefits, as their boats are associated with primary residences or second home properties, and they have less flexibility to seek alternative places to boat. In times of high or low waters, media reports often overstate the actual situation, or fail to give adequate coverage when water levels return to a generally safe range for boating. This situation keeps many boaters at home and adds to the negative economic impact estimate that would be obtained solely from estimating boater days lost when waters are at unsafe levels.
Most uncertainties in our estimates affect the magnitude of dollar amounts on damage curves, but not the seasonal patterns and general shapes. These issues may affect judgments of disproportionate loss, but are unlikely to affect plan rankings. Thus, any additional sensitivity analyses should focus on factors that change the seasonal pattern of the curves, e.g., the extent to which boaters would take more trips in late summer and fall if water levels were not a problem.

9. References

Fisheries and Oceans Canada (2004). Étude sur la navigation de plaisance au Québec, presentation, Policy and Economics Branch, Quebec Region.

10. Review Process

Authors: T.L. Brown, J-F. Bibeault, N.A. Connelly, and J. Brown
Reviewed by: Co-authors
Received TWG Support: 1/18/05
External Review: Frank Lupi
C. Coastal Processes Technical Work Group Summary

Objectives
The Coastal Technical Work Group evaluated the impacts that changes in water levels on Lake Ontario and the St. Lawrence River would have on human presence along the coasts. Factors other than calm water levels have a significant influence on the impacts experienced by coastal areas, and these factors vary greatly from area to area. Along Lake Ontario, wind-driven waves and wind-induced water level changes (surge) are key factors influencing damages to coastal areas. These factors are of much less importance along the St. Lawrence River, although wind-driven waves are significant in some areas such as Lake St. Lawrence. In portions of the St. Lawrence River downstream of Montreal, waves generated by passing ships have a major influence on coastal processes.

Data Collection and Evaluation Methodology
It became evident at an early stage of the study that it would be advantageous to use more than one evaluation methodology. Differences in physical features, coastal processes and data availability led to a decision to develop one approach for Lake Ontario and the St. Lawrence River upstream of the control dam at Cornwall-Massena, and a second approach for the St. Lawrence River between Cornwall-Massena and the downstream study limit of Trois Rivières.

Lake Ontario and the Upper St. Lawrence River
The Work Group reviewed modeling approaches that have been used for similar purposes in previous studies. The Flood and Erosion Prediction System (FEPS) computer model, developed by W.F. Baird and Associates, Ltd. in 1997 under contract to the United States Army Corps of Engineers (USACE) for the Lake Michigan Potential Damages Study (USACE, 1999), was selected to form the basis of the evaluation procedure on Lake Ontario and the upper St. Lawrence River. This model has been adapted and further upgraded for the specific needs of the Study.

Existing spatial and temporal data was gathered together for the Study. Several significant data gaps were filled through the collection and development of new data. A dedicated computer, known as the Coastal Data Server, was set up to store these volumes of data. Lake bottom depths (bathymetry), land surface elevations (topography) and ortho-photographs of the current shoreline conditions were provided through the Common Data Needs Work Group (refer to that section for more information). Property parcel data was gathered from U.S. counties and Canadian regional municipalities, where available. Shoreline classification data was gathered by the Coastal Work Group on a 1-km-reach basis along the Lake Ontario and upper St. Lawrence River shoreline and included details on the geomorphic shoreline type, nearshore geology and type and quality of shoreline protection that is present along the shoreline. Historical aerial photographs documented the shoreline and river conditions from approximately the 1930s to the present. Historical recession rate data was compiled by the Coastal Technical Work Group based on existing information as was information on previous flooding events. Hourly water level data at gauges on the Lake and River were compiled in the Shared Vision Model. Hindcast time series wind speed and direction based on the past 40 years of data was used to develop a wave energy database. Historical ice cover data for Lake Ontario was compiled from the Great Lakes Environmental Research Laboratory, National Oceanic and Atmospheric Administration. The Coastal Data Server consists of 120 gigabytes of digital information that is actively part of the decision making process.
The Lower St. Lawrence River

In comparison to the upper portion of the study area, the waters downstream of the control dam are differentiated by the influences of river flows, ship wakes and the response of shorelines composed, for the most part, of marine clays.

An extensive digital data collection of bathymetry, topography, flow conditions, aerial photography and databases relating the land-use and erosion processes was compiled in a data warehouse based in the Ste-Foy, Quebec offices of Environment Canada. This dataset formed the backbone of the performance indicator analysis for the lower St. Lawrence.

Application of regional-scale computer modeling to the shorelines of the lower St. Lawrence River from Cornwall, Ontario to Trois-Rivières, Quebec was developed by Pacific International Engineering to create a new and clear understanding of the relative importance of river currents, wind waves and ship-generated waves and how they interact with water levels (Pacific International Engineering, March 2004). This enabled the development of simplified predictive tools for erosion and an assessment of economic impacts.

Flooding stage-damage relationships were developed for 42 municipalities on the lower St. Lawrence River from Cornwall to Trois Rivières by Environment Canada-Quebec Region based on parcel and assessment data of the affected properties and a fine-resolution digital elevation model developed for the Coastal Technical Work Group by the Common Data Needs Technical Work Group (refer to that section).

Performance Indicators

Lake Ontario—Upper St. Lawrence River

The impacts of water level fluctuations on Lake Ontario and upper St. Lawrence River shoreline communities were categorized by three primary performance indicators, specifically: flooding, shoreline erosion of developed properties, and existing shoreline protection maintenance. The Coastal Technical Work Group also examined sediment budgets, beach access, and barrier beaches and dunes as possible performance indicators.

Flooding

Over 3,000 shoreline property parcels are located below elevation 76.2 m (250 ft) and could be at risk of flooding on Lake Ontario and the upper St. Lawrence River. Flood damages to these properties generally occur during periods of high lake levels and severe storms. The flooding performance indicator on Lake Ontario quantifies the impacts of flooding due to inundation of structures and the force of waves striking buildings. Economic damage calculations are made for individual property parcels at risk of flooding. The flooding performance indicator algorithm was developed, tested, calibrated and verified in the Flood and Erosion Prediction System (FEPS). The flooding performance indicator algorithm is applied to the entire parcel database for the duration of a simulation in the Shared Vision Model, commonly 101 years. However, the wave database was based on 40 years of data statistically hindcast to represent the 101-year simulation period. An analysis determined that this could significantly affect plan results as the happenstance nature of waves meant that a plan that shifted levels might avoid or enhance damage depending on the wave sequence. To address this, a number of statistically generated wave sequences were derived based on the quarter month maximum of the maximum, the average of the maximums and the 1st and 2nd standard deviation from the maximum. The results could be tested for all of these sequences. Using this method, it was determined that the 1st standard deviation was probably the best wave-sequence representation for ensuring that the numbers were not being underestimated. The 40-year hindcast wave data was used in the 50,000 stochastic analyses since the shear number of combinations of levels and waves would dismiss any bias in the data. For more information on the flooding performance indicator refer to the report Flooding Performance Indicator: Methodology and Shared Vision Model Application (Baird, 2004a).
Erosion of Developed, Unprotected Properties

Shoreline erosion and the associated economic impacts were calculated for individual property parcels around the perimeter of the Lake and on the upper river. The erosion performance indicator algorithm is based primarily on average recession rates and wave energy. The erosion function is applied to all of the 1-km shoreline reaches on Lake Ontario and the upper St. Lawrence River that feature a long-term recession rate. If the shoreline does not erode or has a long-term accretion trend, the function is not applied.

Once shoreline recession is predicted for a given reach and regulation plan, the second component of the erosion performance indicator, the economic calculation, is applied. This calculation is applied to developed, unprotected properties only and is based on the timing and cost of building shore protection to safeguard the value of a building. This approach was reviewed and supported by the economic advisors, who agreed that damages should be capped at the cost of building shore protection since this is the realistic response rather than allowing erosion to continue to the point where the value of the building would be lost. For the evaluation, it was assumed that the riparian owner would let erosion occur until the minimum distance from the home to eroding shoreline is 10 m (32.8 ft). Figure C-1 provides visual interpretation of how the erosion performance indicator is applied.

![Figure C-1: Conceptualization of erosion performance indicator](image)

The difference among plans is the timing of when a riparian owner would have to build shore protection under Plan 1958-DD versus an alternate plan and is captured in economic terms by discounting future damages so that the later the damage, the less important it is. For more information on the erosion performance indicator, refer to the report Erosion Performance Indicator: Methodology and Shared Vision Model Application (Baird, 2004b).

The unit costs for the construction of new shore protection under the erosion performance indicator are listed in Table C-1.
Shoreline Protection Maintenance

Shoreline protection structures are already present for a large percentage of riparian properties exposed to flooding and erosion hazards around the perimeter of Lake Ontario. Based on the parcel database, approximately half of the shoreline length has been armoured with good quality seawalls and revetments. For the evaluation of new regulation plans, it is assumed that these structures are stable, will be maintained, and will continue to provide effective erosion protection. However, if a regulation plan results in more extreme high water levels, there will be negative impacts on the existing structures that were designed for the range of lake levels since 1960. The existing shoreline protection indicator quantifies the impacts of the alternative regulation plans on the structures currently providing effective erosion control around the perimeter of Lake Ontario and the St. Lawrence River.

The three principal modes of failure that require significant maintenance or complete replacement and that are considered in the shoreline protection maintenance performance indicator are as follows:

- Age failures – degradation of materials, such as concrete or quarried stone;
- Overtopping failures – wave overtopping during storms (event driven);
- Downcutting failures – cumulative process at the toe of the structure.

Age failures are independent of lake levels. However, the volume of water overtopping a structure during a storm is very sensitive to lake levels. In Figure C-2, the crest of the concrete wall is a product of the design lake level and design wave height. If these levels are exceeded during a storm, the wall may fail or require significant maintenance. The existing shore protection performance indicator evaluates a regulation plan by cycling through the hydrograph and looking for storm events that would cause failure or require maintenance of existing structures.

<table>
<thead>
<tr>
<th>ShoreUnit</th>
<th>Shore Protection Cost ($/m)</th>
<th>Shore Protection Cost ($/ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CayugaCo</td>
<td>2,168</td>
<td>661</td>
</tr>
<tr>
<td>DurhamRM</td>
<td>2,012</td>
<td>613</td>
</tr>
<tr>
<td>Frontenac</td>
<td>2,432</td>
<td>741</td>
</tr>
<tr>
<td>HaltonRM</td>
<td>2,432</td>
<td>741</td>
</tr>
<tr>
<td>HamiltonRM</td>
<td>2,432</td>
<td>741</td>
</tr>
<tr>
<td>Hastings</td>
<td>2,012</td>
<td>613</td>
</tr>
<tr>
<td>JeffersonCo</td>
<td>2,488</td>
<td>759</td>
</tr>
<tr>
<td>Leeds</td>
<td>2,134</td>
<td>651</td>
</tr>
<tr>
<td>Lennox</td>
<td>2,432</td>
<td>741</td>
</tr>
<tr>
<td>MonroeCo</td>
<td>1,933</td>
<td>589</td>
</tr>
<tr>
<td>NiagaraCo</td>
<td>1,889</td>
<td>576</td>
</tr>
<tr>
<td>NiagaraRM</td>
<td>2,070</td>
<td>631</td>
</tr>
<tr>
<td>NorthumberlandRM</td>
<td>2,012</td>
<td>613</td>
</tr>
<tr>
<td>OrleansCo</td>
<td>1,889</td>
<td>576</td>
</tr>
<tr>
<td>OswegoCo</td>
<td>2,168</td>
<td>661</td>
</tr>
<tr>
<td>PeelRM</td>
<td>2,048</td>
<td>624</td>
</tr>
<tr>
<td>PrinceEdward</td>
<td>2,012</td>
<td>613</td>
</tr>
<tr>
<td>StLawrenceCo</td>
<td>2,134</td>
<td>651</td>
</tr>
<tr>
<td>Stormont</td>
<td>2,134</td>
<td>651</td>
</tr>
<tr>
<td>Toronto</td>
<td>2,048</td>
<td>624</td>
</tr>
<tr>
<td>WayneCo</td>
<td>1,933</td>
<td>589</td>
</tr>
</tbody>
</table>

Table C-1: Unit Costs for the Construction of New Shoreline Protection
Lake bed downcutting is another common mode of failure for existing shoreline protection structures and it is sensitive to water levels. For example, if lake levels are low and the waterline is offshore of the structure toe, downcutting will not occur. Conversely, if water levels are very high, the majority of the wave energy will be dissipated on the structure face or will overtop the structure. Therefore, the amount of downcutting is very sensitive to lake levels. Figure C-3 shows a shore protection structure where increased downcutting may lead to structure failure.

Downcutting also influences the future replacement cost of either an age or overtopping failure. If significant downcutting has taken place over the simulation time, the expense to replace the structure will be increased since a larger structure will have to be built given the deeper toe. For more information on the shore protection performance indicators refer to Shore Protection Maintenance Performance Indicator: Methodology and Shared Vision Model Application (Baird, 2004c).

Sediment Budget

The sediment budget indicator was developed to categorize the relationship between shoreline recession and barrier beaches and dune environments. The bluff shorelines of Lake Ontario have been eroding for thousands of years. This process provides new sand and gravel for the nearshore zone and thus is the source of new material for beach and dune environments around the Lake. Without a “background” erosion rate, there would be no new sand and gravel to nourish the beaches and dunes along the shore. Originally, the Coastal Technical Work Group thought this should be assessed; however the economic advisors determined that sediment budgets should not be included in the economic analysis noting that the processes of erosion, transport, and deposition are dynamic and change over time. Beach accretion may be a final step in the transport process or it may be an intermediate one that is subject to further erosion and further transport. Beach accretion is only one of the economic consequences of sediment transport and while it appears to have positive net benefits, other sediment impacts, such as the initial loss of eroded material and sediment deposition in channels and harbours, seem to be negative. With these negative impacts left unmeasured, accounting for beach accretion alone would put a favourable light on sedimentation when the overall impact may be negative. The discussions indicated that the net benefits of beach accretion were not large, relative to other net benefit measures.
Beach Access
The beach access performance indicator was developed to quantify water level impacts on beaches, such as those located in provincial and state parks. During high lake levels, beach width decreases as more sand is submerged, thus reducing the width of the beach for recreation. A field survey was completed at two large provincial and state parks (Sandbanks and Hamlin, respectively) to collect data from beach users. This information, along with existing published data on beach visitation and economic behavior was to be used to quantify the impact of water levels on beach visitation. An economic function was developed to determine the impacts of high and low lake levels. However, the economic advisors did not believe that this performance indicator had the proper rigor to be compared with the other economic performance indicators. They advised that it not be included in the analysis, but rather be reported in the contextual narrative.

Beach and Dune Performance Indicator
The beach and dune performance indicator was developed to quantify water level impacts on natural beach and dune systems, such as barrier beach complexes protecting wetlands. The sandy barrier systems, such as the beaches of eastern Lake Ontario, are sensitive to high lake levels and storms. However, given the dynamic nature of the littoral system it was too difficult to quantify sand transport and would have taken considerable resources to build such a model. As a result, based on existing knowledge and literature reviews, a hydrologic criteria metric was developed that basically mimicked the erosion criteria developed by the Coastal Technical Work Group.

Lower St. Lawrence River
Local flood depth-damage curves were developed for buildings in the floodplain of the St. Lawrence River, as shown in Figure C-4. These were used to calculate the primary economic flooding performance indicator, dollar damage to buildings and contents of buildings as a result of a flood event.

Regional numerical models and functions relating this damage data were developed on a municipal basis. The Sorel Islands as well as the municipalities around Lac St. Pierre are by far the most flood-damage prone. In the Lac St. Louis area, the municipalities at greatest risk are Beauharnois, Léry and Notre-Dame-de-l’Île-Perrot (Doyon et al., 2004).

The Coastal Technical Work Group decided that the economic performance indicator would not fully describe the impacts of a flood on communities on the lower river and therefore they also established some societal indicators to complement and provide context for the economic performance indicator, accounting for societal aspects of damage. However, they all reflect direct damage.

The societal performance indicators include the following:
- Number of flooded residential buildings;
- Number of expropriated properties;
- Total area (in hectares) of flooded lands quantified by land-use type; and
- Total length (in kilometres) of flooded roads quantified by road type.
Erosion of Unprotected Properties

Erosion along the lower St. Lawrence was calculated for unprotected properties. On the lower river there are very few developed, unprotected eroding properties. The land that is eroding is primarily located on undeveloped islands. On the Lake, no value was given to this land lost because a gain was assumed elsewhere in the system. This is not necessarily the case on the River, where sediments are carried downstream towards the ocean. However, two important findings played into the analysis. First, the economic value of the property lost was so small that it simply did not factor into the plan-evaluation decision process. Second, based on field observations and modeling studies, it was determined that in many areas along the lower river, erosion is primarily ship-wake driven. While water levels play a significant role in erosion processes along the River, regulation of Lake Ontario outflow is seen to have an influence on erosion rates that is secondary to the large seasonal fluctuations in River levels (Davies and MacDonald, 2004a).

Shoreline Protection Maintenance

About half of the total frontage on the lower St. Lawrence River has shore protection. Economic analysis shows that the cost of shore protection far outweighs the economic value of land lost due to erosion. Shoreline protection maintenance is calculated in a St. Lawrence River Model (SRM) developed by Pacific International Ltd. The scour at a structure is determined from a set of polynomial equations with coefficients that vary according to water level. Required structure crest elevation is computed from the higher statistics of the maximum quarter-monthly water levels using a moving 10-year window. These are combined with data on structure locations and type in order to compute the change in the annual equivalent cost of shore protection. A detailed survey was undertaken to document the individual shore protection structures along the lower river. Scour modeling was validated by comparison of the rate of bed downcutting to that at unprotected eroding sites in the vicinity. The water level fluctuation statistics used for determination of structure crest elevation were compared with those from more detailed models (Davies and MacDonald, 2004a).

Baseline Economics

An estimated 25,000 privately owned riparian properties are located on Lake Ontario and the St. Lawrence River upstream of the Moses Saunders Dam. There are three components of baseline economics in the case of shoreline properties: (i) developed properties without shoreline protection, (ii) properties with existing shoreline protection, and (iii) properties at risk of flooding.

With respect to erosion, there are close to 2,700 developed properties in the coastal database (i.e., properties with residential or commercial buildings) that do not currently have shore protection, which places them at risk of erosion damages. The assessed building value for these properties is close to US$300 million (not including land value). There are approximately 5,000 developed properties that already have good quality (level 1 or 2) shore protection. The shore protection structure value itself is close to US$500 million and the assessed building value is roughly US$1 billion. (Baird, 2005b). The difficulty lies in the fact that these are the values of the housing and property stock. They are not appropriate as baseline measures because what is needed is an estimate of the scale of the annual flow of economic activity.

To provide the right context for annualized damages, a value for a building needs to be put in annualized terms. A standard way to develop a context measure, suggested by the economic advisors, was to use the depreciation of the shoreline building. Depreciation is an estimate of the amount of expenditure needed to keep the value of the housing stock unchanged. As a result, it provides an estimate of annual loss of investment irrespective of regulation plan. Based on a depreciation rate of 3.6%, as suggested by the economic advisors, the annual depreciation of the US$300 million building value at risk of erosion is roughly US$10.8 million. This represents the denominator to be used in assessing the percent benefit gained or lost by any given plan relative to plan 1958-DD for the erosion performance indicator. In the case of erosion to undeveloped, protected properties on Lake Ontario, Plan B+ has a net benefit of -US$0.17 million relative to Plan 1958-DD. The percent damage for this performance indicator then, would be -US$0.17 million divided by US$10.8 million for a loss of 2%.
Since the value of shore protection will increase over time as new shore protection is built as part of the erosion performance indicator, it is difficult to separate the baseline economics for the shoreline protection maintenance indicator and the erosion performance indicator. However if only the properties with existing shoreline protection are used, a conservative estimate results. Combining shore protection value with building value provides a total investment value of US$1.5 billion. A 3.6% depreciation rate yields an annual depreciation of roughly US$54 million to be used as the baseline economic value for Lake Ontario shore protection maintenance. In other words, regardless of the regulation plan in place, it is estimated that property owners would spend approximately $54 million annually to maintain their property values. Thus, gains and losses associated with a specific regulation plan can be measured relative to this amount.

With respect to flooding on Lake Ontario, there are approximately 2,400 developed properties that are within 2.0 m of chart datum and considered at risk from flooding. The building and contents value for the 2,400 properties is estimated at $500 million. Based on the 3.6% rate the depreciation measure is US$18 million. Among the counties assessed on the upper St. Lawrence River (Jefferson and St. Lawrence Counties), there were approximately 600 properties at risk of flooding, representing a US$75 million building and contents value. The resulting baseline economic value, based on 3.6% depreciation, would be US$2.7 million.

On the St. Lawrence River downstream of the Moses Saunders dam, there are an estimated 5,770 single-family dwellings within the 100-year floodplain, with an estimated value of US$380 million, with a depreciation value of $13.7 million to be considered the baseline for downstream flooding damages. Thus, the sum of these flooding-related depreciation costs is US$18.0 million + US$2.7 million + US$13.7 million = US$34.4 million. As pointed out above, gains and losses associated with a specific regulation plan can be measured relative to this amount.

Downstream shore protection maintenance damages should be relative to the depreciation of the $200 million in shore protection infrastructure for a baseline of $7.2 million.

Table C-2 shows the baseline economics for the coastal performance indicators, in millions of U.S. dollars annually.

Table C-2: Economic Baselines for the Coastal Performance Indicators ($US million)

<table>
<thead>
<tr>
<th>COASTAL</th>
<th>Economic Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lake Ontario</td>
<td></td>
</tr>
<tr>
<td>Shore Protection Maintenance</td>
<td>$82.8</td>
</tr>
<tr>
<td>Erosion of Unprotected Developed Parcels</td>
<td>$54.0</td>
</tr>
<tr>
<td>Flooding</td>
<td>$10.8</td>
</tr>
<tr>
<td>Upper St. Lawrence River</td>
<td></td>
</tr>
<tr>
<td>Flooding</td>
<td>$18.0</td>
</tr>
<tr>
<td>St. Lawrence</td>
<td></td>
</tr>
<tr>
<td>Flooding</td>
<td>$2.7</td>
</tr>
<tr>
<td>Shore Protection Maintenance</td>
<td>$2.7</td>
</tr>
<tr>
<td>St. Lawrence</td>
<td></td>
</tr>
<tr>
<td>Flooding</td>
<td>$20.9</td>
</tr>
<tr>
<td>Shore Protection Maintenance</td>
<td>$13.7</td>
</tr>
<tr>
<td>Shore Protection Maintenance</td>
<td>$7.2</td>
</tr>
</tbody>
</table>
Importance of the Stochastic Analysis

The 50,000-year stochastic supply sequence was used to generate reliable estimates of average annual damages for the Lake Ontario and lower St. Lawrence River flooding performance indicators. As part of the analysis, each flooding event was considered to be independent, and the long supply sequence gives a good representation of the possible range of water levels for the various plans. For the Lake Ontario erosion and shore protection maintenance performance indicators, there is a serially dependent component to the economic calculation due to the need to measure the amount of erosion or undercutting that occurs along a section of the shoreline over time. On the advice of the economic advisors, the ability of a plan to delay erosion or shore protection maintenance damages was required to be evident in the evaluation. As a result, the 50,000-year stochastic supply sequence was broken up into 495 sequences of 101 years, and each plan evaluated using all the sequences. The average damage was determined for each quarter-month using the 495 supply sequences, and the results were discounted to a present value to represent the impact of postponing the damages. As recommended by the economic advisors, a discount rate of 4% over a thirty-year period was used.

Analysis

Riparian interests around Lake Ontario are most sensitive to high water levels associated with particular regulation plans. The estimated impacts are further influenced by wave energy and wave height conditions, which tend to vary around the Lake and throughout the year but are generally greatest during the spring and fall (see Figure C-5). Thus, the timing of high water levels during the spring and fall can have a considerable impact on plan results. Plans that tend to keep lake levels lower in the late fall and early spring will result in conditions more favourable for the riparian interest. In addition, regulation plans in which the annual peak water level consistently occurs in the June, July, and August period will generally minimize coastal impacts.

Analysis revealed that the shore protection maintenance performance indicator was the most sensitive to changes in a regulation plan on Lake Ontario. There are two particular factors contributing to the increased sensitivity. First, existing shore protection represents a large investment around the perimeter of the Lake (estimated value of $497 million) and postponing the maintenance of that shore protection can be economically beneficial. Second, shore protection maintenance is very sensitive to the impact of waves and is therefore affected by changes in the timing of levels as discussed above. In particular, high water levels occurring during periods of high waves will cause overtopping failures in a very short period of time, and the shore protection module of FEPS allows shore protection to fail multiple times during a simulation period (generally 101 years).

Absolute average annual damages for the shore protection maintenance performance indicator occur predominantly in counties along the south shore of Lake Ontario. Figure C-6 shows the distribution of plan damages (%) for Plan 1958-DD based on the stochastic supplies. The relative distribution of damages among counties is consistent among the various plans evaluated.

Figure C-5: Monthly normal wave energy comparisons (1961-2000) for Niagara County

[Diagram showing monthly normal wave energy comparisons for Niagara County from 1961 to 2000.]
The susceptibility of shore protection to overtopping damages is partly influenced by the estimate of the design water level used in the calculation. In the FEPS model, the design water levels are attributed on a county basis and are estimated based on risk determined from a statistical analysis of the historical wave and surge conditions for a particular county (standard coastal engineering practice). It is recognized that not all structures built within a county will meet the estimated design water levels (some may be higher and some lower). However, determining actual design water levels for individual parcels around the Lake is very difficult, and, based on its evaluation of damages using both estimated design water levels and actual design water levels found in Halton Region, the Coastal Technical Work Group feels that the county estimation is appropriate. A sensitivity analysis revealed that the choice of design water levels for a county can influence susceptibility to overtopping failures under a particular plan. The use of higher design water level estimates for areas along the south shore of Lake Ontario where shore protection costs are greatest tends to decrease overtopping failure. Applying higher design water levels can significantly reduce the differences among plans with respect to the shore protection maintenance performance indicator. If most existing shore protection structures in fact exceed the Coastal Technical Work Group estimates of height requirements for surge in U.S. counties, then differences among plans are less than FEPS estimates. However, experience suggests that U.S. shore protection structures are sometimes under-designed and that many if not most of the structures have lower top elevations than estimated in the FEPS modeling; hence the differences among plans are at least what FEPS estimates and possibly more.
The erosion of unprotected properties performance indicator for Lake Ontario is less sensitive to differences among regulation plans than the shore protection maintenance performance indicator. While existing shore protection can fail multiple times during a simulation, the erosion module of FEPS only estimates the initial cost of building shore protection on unprotected parcels, while any ongoing maintenance is measured as part of the shore protection maintenance performance indicator. Estimating the economic damage of erosion in terms of the timing of having to build shore protection is an appropriate way to put a dollar value on expected damages. However, it was found that regulation plans with marginally different average annual economic damages for the erosion performance indicator could have quite different observed recession rates. Therefore, the economics may not always identify differences in plans in terms of erosion processes around the Lake because of the capped value of shore protection. As a result, both the economic value and the erosion rates were provided to the Study Board in their analysis.

Average annual flooding damages on Lake Ontario are generally the smallest damages of the coastal performance indicators. This is partly because most plans work very hard to keep lake levels below approximately 75.6 m (248 ft). In general, flooding damages are not well distributed throughout a 101-year sequence (see figure C-7). Instead, damages are largely event driven and all the damages may occur in only a few years. As a result, care must be taken when interpreting the average annual results, especially for the 101-year sequences. The full 50,000-year stochastic provides the most reliable results in terms of expected average annual damages.

On the lower St. Lawrence River, shore protection maintenance is not very sensitive to changes in a regulation plan because much of the damage is a result of ship wake, which is not influenced by regulation. In contrast to the open Lake, wind generated waves do not play as great a role on the River, and the natural fluctuation of the lower river as a result of the Ottawa River freshet and local tributary inflows has a greater impact than regulation. Therefore, large differences among plans are generally not observed. On the lower St. Lawrence River, the flooding damage performance indicator is most influenced by regulation. Figure C-8 presents estimates of average annual damages for regional county municipalities (RCMs) based on the Plan 1958-DD stochastic supplies. The distribution of damages among the various RCMs is representative of all the regulation plans. In general, flooding damages are greatest in the RCMs closest to Lac St. Pierre. Although the potential exists for considerable flooding damage in the RCMs closer to the city of Montreal, regulation is quite effective in maintaining desired water levels in these reaches due to the proximity to the Moses-Saunders Dam. Further downstream, within-week variability due to tributary inflow can cause higher levels then anticipated and lead to increased flooding damages.

Integration into the Shared Vision Model

The detailed computer modeling used to determine performance indicator impacts for both shoreline processes and flooding in the lower river has been condensed into representative algorithms within the Shared Vision Model. This now allows the evaluation of performance indicators, thereby facilitating the integration of the findings of this work into the overall decision-making process.
The FEPS and SRM run as separate components of the Shared Vision Model. An executable version of the FEPS was developed to allow for quick analysis of alternative plans and was later modified to allow for the running of the full 50,000-year stochastic supply sequence. Results from the historical SRM evaluations showed little difference among plans. Evaluations for four stochastic and four climate change scenarios confirmed this, so the SRM was not modified to run through the 50,000-year simulation. Instead, the final values for downstream shore protection costs are an average of the historical and four extreme 101 stochastic series results.

Summary of Key Findings

- The timing of high water levels during the spring and fall can have a considerable impact on plan results. Plans that tend to keep Lake levels lower in the late fall and early spring will result in conditions more favourable to the riparian interest.

- Regulation plans in which the annual peak water level consistently occurs in the June, July, and August period will generally minimize coastal impacts.

- The shore protection maintenance performance indicator was the most sensitive to changes in a regulation plan on Lake Ontario because shore protection maintenance is very sensitive to the impact of waves, and postponing the maintenance of existing shore protection can be economically beneficial, especially to south shore residents.
The susceptibility of shore protection to overtopping damages is partly influenced by the estimate of the design water level used in the calculation. Higher design water levels can significantly reduce and even eliminate differences among plans in terms of this performance indicator.

Erosion on Lake Ontario will occur regardless of the regulation plan. The difference among plans lies in how quickly it will happen. While the estimated dollar impact of regulation may be relatively small, the impact on recession rates can be significant.

The probability of flood damage along Lake Ontario can be estimated based on a combination of water level and time of year; damage is least likely when storms are least likely (in the summer). Average annual flooding damages on Lake Ontario are generally the smallest damages among those associated with the various coastal performance indicators. Damages are largely event driven, and all the damages may occur in only a few years.

Low water levels can exacerbate erosion and shore protection damage because the “toe” of the bank is eroded, leading to collapse of unprotected banks and the undermining of existing shore protection.

On the lower St. Lawrence River, shore protection maintenance is not very sensitive to changes in a regulation plan because much of the damage there is the result of ship wake, which is not influenced by regulation.

The flooding damage performance indicator is most influenced by regulation on the lower St. Lawrence River, especially in lower portions downstream of Montreal around the Sorel/Lac St. Pierre area.

Erosion on the lower river is not a major economic issue since most of the developed properties are already protected.

Participants

Coastal Technical Work Group

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thomas Bender, U.S. Lead</td>
<td>U.S. Army Corps of Engineers, Buffalo, NY</td>
</tr>
<tr>
<td>Ralph Moulton, Cdn Lead</td>
<td>Environment Canada, Burlington, Ontario</td>
</tr>
<tr>
<td>Joan Pope</td>
<td>U.S. Army Corps of Engineers, Vicksburg, MS</td>
</tr>
<tr>
<td>Scott Thieme</td>
<td>U.S. Army Corps of Engineers, Detroit, MI</td>
</tr>
<tr>
<td>Robert Shearer</td>
<td>NYS Dept. of Environmental Conservation, Avon, NY</td>
</tr>
<tr>
<td>Sandra Bonanno</td>
<td>The Nature Conservancy, Pulaski, NY</td>
</tr>
<tr>
<td>Donald Woodrow</td>
<td>Hobart and William Smith Colleges, Geneva, NY</td>
</tr>
<tr>
<td>Teresa Labuda</td>
<td>Conservation Halton, Milton, Ontario</td>
</tr>
<tr>
<td>Jean Francois Cantin</td>
<td>Environment Canada - Quebec, Sainte-Foy, Quebec</td>
</tr>
<tr>
<td>Bernard Doyon</td>
<td>Environment Canada - Quebec, Sainte-Foy, Quebec</td>
</tr>
<tr>
<td>Charles O’Neill</td>
<td>New York Sea Grant, SUNY Brockport, NY</td>
</tr>
<tr>
<td>Ala Boyd</td>
<td>Ontario Ministry of Natural Resources, Peterborough</td>
</tr>
<tr>
<td>Serge Lepage</td>
<td>Environment Canada, Montreal, Quebec</td>
</tr>
<tr>
<td>Bernard Rondeau</td>
<td>Environment Canada, Montreal, Quebec</td>
</tr>
<tr>
<td>Chris Stewart</td>
<td>Christian J. Stewart Consulting., Victoria, BC</td>
</tr>
<tr>
<td>Rob Nairr</td>
<td>W.F. Baird & Associates, Oakville, Ontario</td>
</tr>
<tr>
<td>Pete Zuzek</td>
<td>W.F. Baird & Associates, Oakville, Ontario</td>
</tr>
<tr>
<td>Mike Davis</td>
<td>Pacific International Engineering, Inc., Ottawa, ON</td>
</tr>
<tr>
<td>Neil MacDonald</td>
<td>Pacific International Engineering, Inc., Ottawa, ON</td>
</tr>
<tr>
<td>Frank Sciremammano Jr.</td>
<td>Rochester Institute of Technology, Rochester, NY</td>
</tr>
<tr>
<td>Larry Field</td>
<td>Downview, Ontario</td>
</tr>
<tr>
<td>Marc Hudon</td>
<td>Chicoutimi, Quebec</td>
</tr>
<tr>
<td>Tony McKenna</td>
<td>Olcott, NY</td>
</tr>
<tr>
<td>Henry Stewart</td>
<td>Rochester, NY</td>
</tr>
<tr>
<td>Max Streibel</td>
<td>Greece, NY</td>
</tr>
</tbody>
</table>

Board Liaison
PIAG Liaisons

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frank Sciremammano Jr.</td>
<td>Rochester Institute of Technology, Rochester, NY</td>
</tr>
<tr>
<td>Larry Field</td>
<td>Downview, Ontario</td>
</tr>
<tr>
<td>Marc Hudon</td>
<td>Chicoutimi, Quebec</td>
</tr>
<tr>
<td>Tony McKenna</td>
<td>Olcott, NY</td>
</tr>
<tr>
<td>Henry Stewart</td>
<td>Rochester, NY</td>
</tr>
<tr>
<td>Max Streibel</td>
<td>Greece, NY</td>
</tr>
</tbody>
</table>
References

This contextual narrative has been prepared for six Coastal Performance Indictors (PIs) on Lake Ontario and the upper St. Lawrence River: Erosion, Existing Shore Protection, Sediment Budgets, Flooding, Beach Access and Barrier Beaches and Dunes. A separate contextual narrative prepared for the lower St. Lawrence River follows.

1. General Socio-economic Context

The Coastal Technical Work Group (CTWG) has developed an extensive database to complete the impact evaluation for the six performance indicators (Coastal Data Server, active). In addition to spatial datasets, such as 3D topographic grids and temporal information, such as hourly wave data along the shoreline, a comprehensive property parcel database has been developed for a 100- to 200-m buffer zone along the shoreline, depending on local hazards and site conditions. The parcel database includes over 20,500 property parcels. This dataset, extensive field work, and the four-year technical investigation were used to provide background data for this contextual narrative. Information on the general socio-economic context is given below:

(a) Production value of the interest

Several tracts of shoreline are not covered in the parcel database due to a lack of digital parcel data; these include the City of Toronto, County of Prince Edward, Bay of Quinte and much of the Canadian shoreline of the upper St. Lawrence River. Therefore, based on a general knowledge of these areas and the existing 20,570 parcels in the database, we estimate that there are over 25,000 privately owned riparian properties on Lake Ontario and the upper river that are exposed to coastal hazards. The assessed value of this property is approximately $5 billion. This dollar estimate is based on actual data plus projections for areas with missing information. It does not include county or municipal holdings, such as water treatment plants, or state/federal operations such as nuclear plants. If the tax contribution by these riparian properties to local, state/provincial and federal governments were added to the assessed value of the land/buildings, the overall production value would likely increase by 30-50%, for a total production value of $6.5-7.5 billion.

The production value of beach recreation can be measured in terms of annual expenditures. For the beaches with visitation statistics (generally state and provincial parks), the annual expenditures associated with beach use exceed $100 million. Considering that many beaches are not included because of a lack of visitation statistics (e.g., municipal beaches), the actual expenditures or productive value of beaches on Lake Ontario and the upper St. Lawrence River is likely 50-100% higher.

Barrier beaches and dunes are an integral physical component of the sheltered embayments and drowned river valleys along the shores of Lake Ontario, which in turn support wetlands and estuaries that provide critical environmental habitat. Refer to the barrier beaches and dunes performance indicator summary for additional information. Since a productive value is not placed on the environmental habitat and the species it supports, it is not possible to assign a productive value to barrier beaches or dunes. However, it is critical to note that they play a valuable role in maintaining estuaries and wetlands; hence, by extension, water level impacts on these physical features should be considered.

In summary, the overall productive value of the coastal performance indicators is $6.7-7.7 billion, which excludes the benefits of barrier beaches in terms of the natural environment.
(b) Number of stakeholders

With over 25,000 riparian properties affected by water level fluctuations, over 50,000 people in Ontario and New York State are directly concerned by erosion, flooding and shore protection impacts. Since state and provincial beaches are owned by the residents of New York State and Ontario, the entire population of these two political units are stakeholders. Further, when the environmental benefits of barrier beaches and dunes on ecosystem health and biodiversity are considered, the stakeholder group extends to at least everyone living within the watersheds that supply Lake Ontario and the upper St. Lawrence River.

(c) Organizational characteristics

There are no organizational characteristics of these stakeholders that are relevant to this contextual narrative.

(d) Values and perceptions of stakeholders

Riparian property is held around the entire perimeter of the Lake and the River. It is not possible to list all the values and perceptions of these stakeholders, however, some very general observations are provided: i) low to average lake levels are desired; ii) high lake levels are not desired because they will increase flood risk, accelerate erosion, and result in damage to existing shoreline protection; and iii) more could and should be done to regulate the Lake for the benefit of riparian interests. Further, many riparian land owners feel that, since regulation, lake levels are higher than they would have been without the dam, when, in reality, they are lower than under a no-project scenario.

(e) Significant statutory, regulatory and policy restrictions

Land use zoning and shoreline regulations influence development patterns and growth rates within the coastal hazard zone of Lake Ontario and the St. Lawrence River. Under the status quo, conversion of agricultural lands to residential parcels will continue, and the number of property parcels at risk from coastal hazards will increase in the future. Thus, the estimate of 25,000 riparian parcels will increase in the future.

The Province of Ontario recently introduced greenbelt legislation for the western end of Lake Ontario; the legislation will stop the conversion of agricultural lands to residential land use in this region. The impacts of this legislation on future growth rates of coastal riparian property will be relatively small, however, as much of the shoreline is already zoned residential in this region. In summary, future land use zoning is not expected to change, and the number of riparian properties is expected to increase on the Lake and the River.

A second regulatory consideration is the construction of shoreline protection to reduce or eliminate erosion and flooding hazards along the shoreline. Although state, provincial and federal agencies do not necessary condone the construction of engineering structures to protect residential properties, permits can be obtained. For example, on the open coast of Lake Ontario, approximately half of the riparian parcels are already armoured. If changes were made to the policies governing the construction of new shoreline protection or the maintenance of existing structures, the impacts on the riparian land owners within the study area would be significant.

(f) History of the interest

At the turn of the 20th century, residential waterfront properties were generally located in urban centres. Between the urban centres, the shoreline lands were used for agriculture or natural open spaces, such as parks. In the past 100 years, the population in the Great Lakes Basin has increased significantly, and so has the wealth in the economy. Combined, these two forces have resulted in a steady conversion of rural agricultural lands to riparian property. Initially, the focus of these converted lands along the waters edge was cottage or seasonal properties. However, in the last several decades, many of the seasonal properties have been converted to full-time residences. In addition, vast tracts of agricultural land have been converted to residential estate lots.
Given the current land use policies in Canada and the United States, pressure to convert agricultural or rural lands to residential properties will likely continue until the entire shoreline is developed into urban communities. This is referred to as the “build-out date,” which corresponds to the time in the future when the entire shoreline features either residential development, commercial-industrial lands or designated park lands. This topic is discussed further in Section 5 below.

(g) Market conditions

Market demand for additional residential property will continue, as mentioned above, until no undeveloped land remains along the shoreline. Therefore, the economic impact calculations computed with the Flood and Erosion Prediction System (FEPS) and the Shared Vision Model (SVM) will underestimate the actual damages in the future. In other words, our database of shoreline development is current as of 2003/2004. In 50 years, there will be more development, but our database will not reflect this additional growth. The vulnerability of future development to damage will be strongly influenced by the enactment and enforcement (or lack thereof) of shoreline management policies.

(h) Impacts of last high or low water conditions

One of the most frequently mentioned high water years, when discussions were held with riparian land owners in the field, is 1973. During high water conditions since regulation (e.g., in 1973 and 1992), the riparian community suffered significant economic damages. The impacts included accelerated shore erosion, increased frequency of flooding, and storm damage to existing shoreline protection structures. A report published by the Ministry of Natural Resources (Water Network, 1991) documents historical river and lake flooding in the Province of Ontario and supports the findings of our algorithms: i.e., the months of March and April are the most damaging in terms of lake flooding. Also, relatively good agreement was seen between historical accounts of flood damages reported for Lake Ontario based on newspaper articles and the results generated with the FEPS.

Many long-term riparian land owners remember the low lake levels of the mid 1960’s. This is often viewed as the utopian condition, with wide beaches in front of eroding bluffs and seawalls, and no threat of flooding. Natural beaches were wide and aeolian transport was able to build new sand dune systems. These low levels are desired by the members of the riparian community, and in general, make them the happiest.

2. Performance Indicators

The coastal performance indicators for Lake Ontario and the upper St. Lawrence River are listed below, along with important assumptions and data limitations.

a. Erosion performance indicator: This performance indicator quantifies the impacts of shore erosion on riparian property and public infrastructure (e.g., industrial buildings) located along the shoreline, in embayments and on the River. The algorithm assumes the owner will build shoreline protection prior to erosion actually threatening the home. The economic cost of building the shoreline protection is a liability to the land owner. The major assumption of the economic methodology is that government agencies will continue to issue permits for construction of shoreline protection.

b. Shore Protection performance indicator: Water level impacts on existing shoreline protection structures are quantified with this performance indicator. During periods of high lake levels and storms, the algorithm predicts structure failures due to wave overtopping, undermining and degradation (age). The economic impacts are measured in terms of the cost to upgrade/replace the damaged structure. If agencies stopped issuing shoreline protection permits, the economic function would overestimate structure replacement costs. However, the damage would ultimately be transferred to the building(s) in the form of destruction due to erosion (i.e., home falls over the bank) and this process is not quantified in our algorithm.
c. Sediment Budget performance indicator: This performance indicator was developed for educational purposes, and no economic function was developed to quantify water level impacts on sediment budgets.

d. Flooding performance indicator: The impacts of water levels and storm waves on flood levels and the associated economic damages are quantified by means of the flooding performance indicator. The computer algorithm can be run in two different modes: i) with mitigation, which assumes the land owner will eventually mitigate flood risks if they are repetitive, and ii) without mitigation, which assumes the owner will sustain flood damage and continuously repair damages and replace contents to full value. The Plan Formulation and Evaluation Group and the Economic Advisory Group determined the 101-year simulation should not be performed as one century-long experiment, but rather as a series of 101 one-year experiments. Therefore, the second option was applied. Using the first option, a home that might be flooded five times a century would only be flooded once, after which mitigation would remove it from the pool of vulnerable homes, thus greatly underestimating damages.

e. Beach access performance indicator: The beach access PI quantifies the impacts of water levels on the physical conditions of recreational beaches, namely beach width, and the associated impacts on beach visitation at state and provincial parks. The field data collected indicated that beach width would affect visitation and ultimately economic expenditures. Of course, other factors not related to water level regulation, such as weather, will affect visitation. The algorithm only considers the impacts of water levels on visitation, as it is the only factor affected by regulation. This indicator was not used in the analysis because it was not deemed to have the proper rigor for comparison with the other performance indicators. A short summary on beaches follows in the next section.

f. Barrier beaches and dunes performance indicator: The principal component of the beach and dune PI is to highlight the important relationship between water levels and erosion/sedimentation cycles. For example, during high lake levels, barriers and dunes will be susceptible to erosion and migration inland. Conversely, during periods of low lake levels, beaches, dunes and barrier systems can recover naturally due to onshore sediment transport and aeolian processes (wind blown sand). There is no algorithm or economic calculation for this PI.

For the erosion, shore protection and flooding PIs, the scale for the assessment was the individual property parcel, while the economic results are reported on a county, country or system-wide scale. Since digital property parcels were not available for a number of the geographic regions of Lake Ontario and the upper St. Lawrence River, the total economic benefits or costs will be an underestimate of the actual impacts. Therefore, when comparing the dollar impacts, the results from the Coastal PIs should be considered conservative.

The computer algorithms developed for the erosion, flooding and shore protection performance indicators were based on four years of detailed study and data collection, peer reviewed throughout the development process and extensively documented in the three Baird reports listed in the sources below (2004a to 2004c). The reader is referred to these documents for additional information on modeling assumptions.

3. Potentially Significant Benefit Categories Not Addressed by the Current Performance Indicators (Secondary Impacts)

Several benefits and impacts of water levels not addressed by the current performance indicator algorithms in the SVM are summarized below.

a. For the erosion PI, in addition to the cost of constructing shoreline protection to mitigate erosion, a regulation plan that accelerates erosion reduces the actual footprint of a land parcel and thus the available land area. This reduction in parcel size is not quantified by an economic calculation, nor is it reflected in assessed property values. However, it does represent a secondary impact to riparian property owners.
b. In the case of the shore protection performance indicator, structure maintenance and replacement following a failure results in larger and higher structures. Not only are these structures more expensive to construct, but in some locations the ever increasing crest elevation may also impair the visual amenities of a property. In other words, if you cannot see the lake from your family room, there is no incentive to pay extra for a waterfront parcel.

c. Following a flood event, there are many additional secondary impacts such as temporary loss of residence, required leave from work to repair/restore the home and other negative economic spin-offs. These secondary impacts are not quantified under the current methodology.

d. As mentioned previously, there are no economic calculations associated with the barrier beaches and dunes PI, only recommendations for new criteria. The benefits of increasing the frequency and duration of low lake levels will not be summarized in any economic tables; however there will be significant benefits to beach-dune systems and the environmental habitat they provide and protect.

Beaches grow when sand moving through the water along the shore drops out of suspension. This is a very dynamic process that depends on sand supply, longshore drift, wind and wave action and water levels. Modeling the deposition process would require the ability to model the composition of soil being eroded along the entire coast, its transport along the coast and into deep water, and then the time and place of its deposition—an imposing task and one that was not deemed possible at this time.

Compounding this difficulty is the fact that the candidate plans are fairly similar. The plan lows and highs are constrained by concerns about flooding, boating, navigation and water supply and so are more similar than different, and the distinctions between them in terms of beach deposition are almost certainly slight and beyond the precision and accuracy of any predictive model.

Nevertheless, beach and dune systems are important for the critical role they play in sheltering the embayments and drowned river valleys located around the perimeter of Lake Ontario. Since half of the developed shoreline has been permanently altered by the construction of shoreline protection, an equivalent reduction in the production of new sand and gravel from natural erosion can also be assumed. This reduction in sediment supply will likely impact the shoreline immediately adjacent to the protection structure, plus the beaches that historically relied on the updrift supply of new sand and gravel from erosion. Collectively this process has resulted in sediment-starved shorelines throughout Lake Ontario and many of the other developed coastlines in the Great Lakes Basin. The reduction in sand supply could leave beaches even more vulnerable to water level changes. Beaches may not be able to recover from high water the way they once did. As a result, experts suspect that the small differences between candidate plans could be important to sustaining beaches. Candidate Plans such as A+ and B+, which include higher summer and winter lake levels that can accelerate long-term erosion rates, may lead to negative morphological changes, including breaches of new inlets during storm conditions, erosion of the protective dune systems and, possibly, the long-term degradation of the features.

4. Key Baseline Conditions

There are two key baseline conditions related to riparian property around the perimeter of Lake Ontario and the St. Lawrence River, as defined by the digital property parcel database. First, development permits will continue to be granted for privately held land. In other words, land owners will be able to develop waterfront parcels for residential and commercial endeavours. This trend will likely continue, and therefore, because development controls are weak or inadequate in some jurisdictions, future homes will be constructed too close to the waters’ edge and be subject to coastal hazards. In short, the number of parcels at risk will increase in the future.

The second key baseline condition relates to the current approach for addressing water level hazards for two of the Coastal PIs: erosion and existing shoreline protection structures. The economic methods for these two PIs include adaptive behaviour in the form of engineering solutions. In other words, in the
evaluation of a new potential regulation plan in simulation time (hypothetical time in the future for the
computer models), if erosion is threatening homes because a plan features high lake levels, our economic
methods assume the owners will mitigate the hazard by building new shoreline protection. They will not
allow their investments (i.e. homes) to fall into the lake because this loss is significantly greater than the
cost associated with building new shoreline protection or upgrading existing protection. It is assumed that
new, upgraded, or replacement shore protection will be well-engineered, with a design life of 25 years.

As mentioned above, securing a permit to build shoreline protection along the waterfront is a complicated,
lengthy and expensive proposition. However, if the riparian perseveres, often with the assistance of a
professional engineer, a permit can be successfully obtained.

If the regulatory process is altered or changed in such a way that riparian land owners can no longer
protect their properties from coastal hazards with engineered structures, the predicted economic damages
for high lake levels will increase dramatically. Rather than incurring the cost of building a $20,000 to
$40,000 seawall to protect a riparian dwelling, the owner may lose a $200,000 building because of erosion
and flooding damages. Therefore, the current economic methods developed in the FEPS and linked to the
SVM would significantly underestimate the impacts of high lake levels under this scenario.

In summary, there are two key baseline conditions or assumptions for the Coastal PIs. First, riparian land
owners now live in coastal hazard areas, and future development of new parcels for residential or commercial
uses will likely increase the number of properties at risk. Second, the riparian land owners will be permitted
to mitigate coastal hazards with engineered protection. In other words, a shoreline protection structure is
less costly than losing the entire home, and this is generally the desired approach for the riparian land owner.

5. Key Trends

The Coastal Technical Work Group has prepared a comprehensive report on existing and future land use
trends entitled A Summary of Existing Land Use, Land Use Trends and Land Use Management Policies
Along the Lake Ontario – St. Lawrence River Shoreline: Implications for Future Water Level Management,
(CJSC, 2004). Some key findings of this report are summarized in the bullets below:

a. Approximately 60% of the Lake Ontario and upper St. Lawrence River shoreline is devoted to
residential land use. In some of the developed counties, such as Monroe on the southeast shore, the
percentage of developed property is much higher, at almost 90%.

b. The increase in shoreline development along the Lake Ontario shoreline for the decade from 1990 to
2000 was approximately 6%. There is every indication that this decadal growth rate will continue in
the future until no undeveloped land is available.

c. On the south shore of Lake Ontario, the detailed US parcel data indicated the average new house size
has almost doubled in the last 10 years, compared with all previous development. It is not surprising
that the assessed values of the homes constructed in the last ten years have also doubled. Although
detailed data were not available to complete a similar analysis in Ontario, the observed trends are very
similar. Collectively, this land use trend is referred to as “mansionization.” New estate homes are
being constructed among smaller cottage settlements, or smaller homes are torn down and replaced
by an estate home.

d. With this rapid pace of development, some counties will reach their maximum development potential
in the next 30 years (e.g., Niagara, Orleans and Monroe in New York State). Others, such as Halton,
Peel and Toronto in Ontario, have already reached their development maximum (or, are very close).
In other words, there are no open tracts of land to be converted to residential communities. In some
of the more rural locations, growth can be facilitated for the next 100 years, and these will be the areas
experiencing the most development pressure.
e. With the ever increasing urban densities and sprawl around the Lake and River, the value of public open space and recreational opportunities along the coast will increase. This urban pressure will intensify the use of beaches for recreational opportunities, and these facts highlight the importance of the beach access and barrier beaches and dunes PIs.

In summary, the trend for riparian land and residential development is continued rapid growth and increases in the size and value of new home construction. One implication for the IJC water levels study is the impact of the static property parcel database, which will underestimate future economic impacts as development densities increase and the value of existing real estate escalates. However, regardless of these limitations, the database of existing development will be sufficient to identify the plans that generate the greatest benefits and costs, based on the current conditions. During the design of our study, the Coastal TWG determined it was more important to accurately record and catalogue the existing development patterns than to forecast future growth. The anticipated growth, in turn, will make the recreational experiences associated with beaches even more valuable in the future.

6. Expected Consequences of Changes of Regulation

The erosion, flooding and shore protection PIs collectively quantify water level impacts on the built environment. In other words, the natural shoreline conditions have been altered or heavily modified by riparian land owners for their enjoyment and often to protect themselves from coastal hazards, such as erosion and flooding. The protection in most cases is in the form of structural solutions, such as engineered seawalls and rock revetments. In some cases, these structures have been carefully designed to account for the historical range of lake levels since regulation (i.e., 1960 to present). In other instances, a design professional was not consulted and the solution was based on local knowledge and experience. Regardless of whether the protection was well engineered or poorly designed, it was meant to address the driving forces (i.e. storm waves) and the historical range of lake levels since regulation (in most cases).

If significant changes are made to the operating range of Lake Ontario, such as increasing the upper limit or the frequency of high levels during the spring storm season, the level of protection provided by the existing physical infrastructure will be reduced. In other words, a seawall designed to protect a property from flooding during a storm event in the current operating range will be less effective at water levels of 76.0 m (249.3 ft), for example.

In short, there is significant development in coastal hazard areas on Lake Ontario and the upper St. Lawrence River. Many of the riparian land owners attempt to mitigate or reduce the hazards with structural protection based on lake level trends since regulation. An increase in the frequency, duration or magnitude of high lake levels in the future under a new regulation plan will magnify the many challenges front row developments already face by being located on the edge of the Lake and River. Conversely, the existing shoreline protection would provide increased benefits if the current upper threshold for the operating range was lowered.

With respect to beaches and dunes, the current regulation plan (1958-D) and adopted deviations has reduced the natural range of fluctuations on Lake Ontario. While the reduction of high lake levels has reduced erosion rates for sandy shorelines, this stability also negatively impacts dune grass communities, which require occasional disruption. Attempts to eliminate periods of low lake levels benefit commercial navigation and recreational boating; however, they deprive these natural sandy shorelines of their period of rejuvenation through enhanced aeolian activity and beach recovery. The following bullets provide some insight into the expected consequences of changes in the regulation of Lake Ontario water levels:
• Increasing the upper limit of the operating range of Lake Ontario will accelerate beach and dune erosion and threaten the stability of barrier beaches. These are dynamic sandy systems, and hard structural engineering will not mitigate the effects of higher lake levels.

• Decreasing the lower limit of the operating range or increasing the frequency of low lake levels would provide benefits for beaches, dunes and barrier complexes. However, it is not possible to quantify these benefits in terms of dollars in the Shared Vision Model.

• Utilizing the existing regulation plan and further suppressing the natural range of Lake Ontario will reduce the potential of the beaches for natural recovery. Some of these impacts could be mitigated with large scale beach nourishments, but these projects are costly and not common on Lake Ontario.

7. Adaptive Behaviours

The following bullets describe adaptive behaviour for the six coastal performance indicators (where applicable):

a. Erosion performance indicator: The entire economic methodology for this PI is predicated on adaptive behaviour. Riparian land owners don’t let their homes fall into the water—they build shoreline protection. The prevalence of shore protection (approximately 50% of lake parcels armoured) justifies the selection of this methodology.

b. Shore protection performance indicator: Again, the entire algorithm for existing shore protection is based on adaptive behaviour. When a structure fails or no longer provides adequate flood and erosion protection, the riparian adapts by upgrading the structure.

c. Sediment budget performance indicator: There is no economic methodology for this PI and thus no adaptive behaviour.

d. Flooding performance indicator: Property owners who suffer flooding or wave damage might adapt by raising their building, bringing in fill to raise the lot, and/or incorporating shore protection. While it is highly likely that property owners experiencing erosion will construct shore protection prior to their homes falling in the water, a property owner who is occasionally subject to flooding and waves may experience damages several times before adapting. For purposes of this analysis, it was assumed that property owners do not adapt to flooding and wave damage.

e. Beach access performance indicator: When water levels result in an undesirable beach condition, such as a very narrow zone for recreational activities, the most common adaptive behaviour is substitution. In other words, alternative recreational options are selected, such as interior camping.

f. Barrier beaches and dunes performance indicator: The principal users of the barrier beach and dune ecosystems are flora and fauna (animals and plants). They do not necessary adapt to changing physical conditions, such as an eroding dune system or degraded marsh, but rather respond to the altered environment. For example, the piping plover no longer nests in sand dune environments along the shores of Lake Ontario because this type of habitat has virtually disappeared. The population has responded by decreasing in size and has altered its natural range, which no longer includes Lake Ontario.
8. Risk Assessment/Sensitivity Analysis

The following bullet points provide some quantitative information on the number of homes at risk from erosion, flooding and damage to existing shore protection structures. The statistics are based on an analysis of the property parcel database, which includes over 20,500 riparian land holdings. In addition, some qualitative comments are provided on water level impacts on beaches and dunes.

a. A total of 578 homes are less than 20 m (65.6 ft) from the shoreline of Lake Ontario. Of these 578 homes, over 200 are less than 10 m (32.8 ft) from the shoreline and 91 are within 5 m (16.4 ft) of the Lake Ontario waterline. Many of these homes are at imminent risk of losses from continued shoreline erosion and flood damages.

b. A total of 7,661 homes were identified with land elevations at or below the 77.2 m (253.3 ft) contour, which was an upper threshold for potential flood damages established by the Study. Of this total, 790 have elevations at the base of buildings equal to or less than 75.37 m (247.3 ft), which is the current upper limit of the operating range for Lake Ontario. When lake levels reach or exceed this upper threshold of the existing operating range, as they did in 1973 and 1993, the risk of economic damage to these low lying properties accelerates.

c. The property parcel database identified 5,559 existing shoreline protection structures, such as seawalls and revetments, on Lake Ontario for front row buildings. Of this total, only 5% were Level 1 structures (well engineered and well maintained with a design life of greater than 50 years). Of this 5%, many of the parcels were associated with institutional buildings, such as water treatment facilities, power plants, and marinas. Very few Level 1 structures protect privately owned riparian property and buildings. Therefore, changes to the current operating range in the future, such an increase in the occurrence of high lake levels, will increase the frequency of maintenance events for the vast majority of these structures protecting riparian property (Level 2 and 3 shoreline protection structures) and decrease their life expectancy. Conversely, low lake levels will extend the life cycle of these existing shoreline protection structures and will be more effective at minimizing hazards, such as flooding.

d. There is considerable risk associated with adopting a new regulation plan that does not consider the specific needs of beaches and barrier complexes. First, human interaction with the waters edge may be negatively impacted in the future. Second, since many of the Environmental TWG performance indicators rely on the habitat created by barrier beaches, these PIs will also be negatively impacted. And finally, these physical-biological interactions are not quantified in the Shared Vision Model, which makes it imperative that the findings summarized in the contextual narratives and PI summaries be considered when evaluating new potential regulation plans.

Much of the existing coastal community along the shores of Lake Ontario and the upper St. Lawrence River is located within the coastal hazard zone. Since regulation began in 1960, the historical range of lake levels has resulted in economic costs due to erosion, flooding, construction of new structural protection, and maintenance of existing shore protection. Since development pressures are anticipated to increase the number of properties located in the coastal hazard area in the future, higher lake levels will increase economic damages. Lower lake levels, such as the new upper operating range recommended by the Coastal TWG for Lake Ontario, will decrease economic losses and provide benefit to beaches and dunes.
9. References

Coastal Data Server, active. *Maintained and populated by Baird and Associates for the purpose of this study*, owned by the IJC.

10. Review Process

Author: Peter J. Zuzek, MES, P.Geo., Baird and Associates
Reviewed by: Members of the Coastal Technical Work Group
Received TWG Support: Yes
C. Coastal Processes Contextual Narrative for the Lower St. Lawrence River

1. General Socio-economic Context

(a) Production value of the interest

The shorelines of the St. Lawrence River between Cornwall and Lake St.-Pierre are a vital cultural, recreational, ecological and residential resource. Currently, there are about 5,770 single-family dwellings within the 100-year return floodplain of the lower St. Lawrence River between Cornwall and Trois-Rivières. There are also about 620 other buildings, either commercial, industrial, farming, etc., present in the floodplain (Doyon et al., 2004). In 2003, the existing residential buildings had an approximate total value of US$380 million (C$460 million).

There are 388 km of eroding shoreline in this section of the St. Lawrence River, of which 27 km are heavily eroding (average recession rate of 1.1 m/yr). There are over 400 km of shore protection along the St. Lawrence River downstream of Cornwall, representing an infrastructure investment of over US$200 million. Erosion and shore protection design is influenced by the combined effects of waves, ship wakes and water levels. In most residential areas, waterfront property is the most desirable and therefore most valuable property.

(b) Number of stakeholders

There are approximately 42,000 individual land parcels and 20,000 residents living along the River’s banks or within the 100-year return floodplain of the lower St. Lawrence River between Cornwall and Trois-Rivières. These shorelines constitute a major natural feature of dozens of communities, including small towns and villages, First Nation communities and the city of Montreal (regional population of 3.3 million). Furthermore, the river shoreline serves as a key cultural and historical focal point for the origins of the communities.

(c) Organizational characteristics

Urban land uses occupy 3% of the territory along the shores and within the floodplain of the St. Lawrence River [Côté et al., 2003]. Agricultural activities, natural environments and wetlands constitute the dominant land uses for this sector. Certain areas of the river reach between Cornwall and Trois-Rivières are heavily urbanized, with residential land occupancy of up to 90% (Montreal, Longueuil, Trois-Rivières, Repentigny and Sorel). Other areas are moderately urbanized and urban land uses account for approximately 50% of land use (St. Lawrence River banks between Montreal and Sorel, Lac St. Louis and Bécancour). Finally, in the less urbanized areas (Lake St. Francis, Lac St. Pierre and the Sorel Islands), a low percentage of the land (generally less than 20%) is characterized by urban land uses. Some of these areas, such as the Sorel Islands, have experienced extensive seasonal residential development.

In general, densities and property values are higher in and near urban centres, such as Montreal, Longueuil and Trois-Rivières, with both density and property values decreasing in the rural communities. The average value of residences is $213K in the heavily urbanized areas, while the value in the moderately and less urbanized areas is $80K and $43K, respectively. In most heavily residential areas, waterfront property is the most desirable and therefore most valuable property.

(d) Values and perceptions of the interest

Ecologically, these shorelines are made up of a complex mixture of wetlands, wooded and grassed areas, comprising valuable habitat for a vast number of migratory waterfowl. Culturally, the River has been the source of food and transportation and it provides an important connection to historical origins for both Aboriginal and European peoples. The values and perceptions of the riparian owners are as wide and diversified as the study area itself.
Prior to about 1980, there were no laws or regulations controlling construction within the floodplain in Quebec. Since then, several laws and regulations have been progressively implemented for the management of construction within the floodplain. These laws address land use, shore and floodplain protection, and environmental protection. In 1976, the Canada–Quebec convention concerning the mapping of floodplains was adopted. In 1987, the Shore, Coast and Floodplain Protection Policy was adopted, the main elements of which were integrated into the development plans of Quebec’s regional county municipalities (RCMs).

However, these laws and regulations seem to have failed to stop construction within the floodplain. Several authors have shown that residential development in the floodplain has continued, and in certain cases even increased, since the beginning of the 1980s, with urban expansion seemingly unaffected by the designation of floodplains [Forget et al., 1999; Bouillon et al., 1999; Roy et al., 1997]. In the last 30 years, floodplain occupancy and its consequent economic value have generally increased in Quebec.

Since 1998, the Government of Quebec has implemented exception mechanisms to the prohibition to build within the floodplain. These mechanisms allow building within the floodplain under certain conditions (defence work, uplifted buildings, etc.). Despite the implementation of these derogation mechanisms, the laws and regulations applying to construction within the floodplain have become increasingly restrictive over the years. It is therefore likely that this general trend to restrict building in the floodplain will continue in coming years. However, it is difficult to assess the long-term impact of the overall regulations, as the regulations are applied in different manners in different areas, and certain municipalities are more permissive regarding construction within the floodplain.

Erosion processes (and related shore protection works) are driven by the combined influences of ship traffic, wind waves, river currents and water levels. Recent trends toward larger container ships downstream of Montreal have been shown to increase shoreline erosion. This places an increased pressure on the riverine system and heightens the need for careful management of the combined effects of river flows, water levels and ship traffic.

As a waterway, the River provides an essential link for one of the most safe and fuel-efficient transportation modes available. The Port of Montreal and the St. Lawrence Seaway system are important socio-economically in their own rights (see contextual narrative for navigation). Concerns about climate change and fuel cost and availability are increasing the economic imperative to use ships rather than rail or trucking to transport goods. In light of this, the Canadian and U.S. governments are examining the feasibility of expanding the draft and vessel length capabilities of the present Seaway system to accommodate much larger vessels as well as container vessel traffic upstream of Montreal.

Over the next ten years, public concerns about the environmental degradation of the shorelines of the St. Lawrence due to the combined effects of water levels and ship traffic are going to increase—because of both increased pressures on the system (in particular due to navigation issues) and increasing public concern over man’s impact on the natural environment (climate change, urbanization, environmental degradation, etc.).

(f) History of the interest

For several centuries, the shores of the St. Lawrence have been privileged for human occupancy. The first houses were built mostly outside of the floodplain, residential development within the floodplain being a relatively recent phenomenon. Between 1930 and 1945, the socio-economic context (economic crisis, war) resulted in very few single-family dwellings being built in Quebec and consequently within the floodplain. From 1945 to 1964, in the context of an economic boom and rather loose regulations, a number of houses were built within the floodplain in Quebec. Between 1964 and 1983, construction within the floodplain was also fairly significant, as was also the case during the period from 1983 to 1997 despite the implementation of regulatory mechanisms to control this type of development.
This interest suffered badly during the high water levels of the 1970s. Extensive flooding occurred in 1974 and 1976, while heavy erosion triggered strong public outcry and resulted in the construction of many kilometres of shore protection. The media often portray high water levels and downstream erosion as a consequence of dam operations designed to protect Lake Ontario riparians at the cost of those downstream.

(g) Trade flows and current market conditions

The market for waterfront properties is still very active, even more so for houses located near major cities or in seasonal residence areas. At the same time, certain areas located within the floodplain, especially between Sorel and Trois-Rivières, are under pressure for development.

(h) Effect of last high or low water conditions

Residents around Lac St. Louis and the Sorel Islands suffered severe flood damages in 1974 and again in 1976. The most recent major flood event, which occurred in 1998, forced the evacuation of 1,000 residents in the Sorel Islands area. At the other extreme, when the River’s water levels are low, flooding is not an issue for riparian property owners.

Similarly, high water conditions in the past have increased shoreline erosion and triggered increased shore protection costs, while lower water levels have reduced erosion and diminished public concerns regarding shore protection. There is no established program to reimburse property owners for land lost due to erosion, or for costs associated with construction or maintenance of shore protection structures. There is, however, a historical precedent for the Canadian federal government paying to build shore protection structures and maintain those erected within 300 m (1,000 ft) of the navigation channel in recognition of the impact of ship wakes and drawdown on bank erosion.

2. Performance Indicators

a. The performance indicators (PI) selected for the analysis are (Doyon et al., 2005):
 - Cost ($) of residential damages (structure and content);
 - Number of flooded homes;
 - Number of properties that could be expropriated (based on provincial regulations);
 - Total area (in hectares) of flooded lands quantified by land-use type;
 - Total length (in km) of flooded roads quantified by road type;
 - Total area and value of land lost due to erosion;
 - Total cost for modification and maintenance of shore protection; and
 - Total volume of fine sediment in river.

Because we believe that economic performance indicators are not sufficient to fully describe the impacts of a flood and erosion on communities, we have established societal PIs to form the basis of the socio-economic impact assessment tools for flooding and erosion. As a result, some PIs translate the damage in terms of dollars while others account for societal aspects of the damage.

b. The estimated cost of possible flooding damages is based on fully comparable data that were provided by a survey of owners of riparian property in the study area. The survey asked different questions related to the cost and nature of the damages from the last major flood event that hit the region of the Sorel Islands in the spring of 1998. Flood-depth damage curves applicable to residential buildings in the study area were built for the purpose of the study.

Also, it should be noted that, in some cases and for different reasons, the cost of damage is fully assumed by property owners who have been affected by a flood but who do not automatically ask for a government indemnity. In other words, the cost of the flooding damage is not fully assumed by the community.
3. Potentially Significant Benefit Categories Not Addressed by the Current Performance Indicators (Secondary Impacts)

The performance indicators listed above reflect direct damages without regard to the metric involved. The key PI is the cost of the residential damages (structure and content) as 89% of the buildings within the 100-year floodplain limits of the lower river are residential (Doyon et al., 2004). However, it should be stressed that damages are not limited to the residential sector. Significant damages also occur to businesses and public infrastructure, particularly in larger floods. Infrastructure damages include damages to telephone, electricity services, roads, railways, flood structures and other public utilities.

At the same time, significant flood damages may arise from disruptions to physical and economic activities such as the loss of sales, reduced productivity and the cost of alternative travel if road and rail links are broken. These are indirect damages that have not been included in the monetary assessment of flood damages. The costs for relocation of evacuated people as well as for deployment of the contingency measures are other examples of indirect damages.

Intangible damages represent another category of damages. They arise from adverse social and environmental effects caused by flooding. There are a number of intangible costs of flooding to the community, including factors such as loss of life and limb, preparedness (cost of flood warning, planning, and community education), inconvenience, isolation/evacuation, stress and anxiety, disruption as well as other health issues. These intangible damages are not easily quantifiable and have not been included in the economic PIs.

Also, some secondary impacts can prove to be very subtle and yet, significant. For example, the properties at high risk generally have a reduced tax list value and, for this reason, they constitute a significant fiscal shortfall, in terms of municipal and school taxes, for local authorities.

Finally, we developed PIs that would allow ranking of the plans based on the assessment of specific, possible flood damages (e.g. residential damages). It should be emphasized at this point that the key PI does not allow assessment of all possible flood damages whether they are direct, indirect or intangible. Thus, the ranking of the plans will be predicated upon absolute damages, but not exhaustive ones.

4. Key Baseline Conditions

The performance indicators used to estimate flood damages rest on two working hypothesis: the first one considers only the existing residences in the assessment of possible flood damages. In other words, the residential occupancy comprises 5,770 single-family dwellings recorded within the floodplain, and the model considers that no new construction will be added to the housing inventory during the simulation. Also, the real estate values always remain constant, i.e. they are not indexed to the cost of living and do not follow the fluctuations of the real estate market. The economic damages are assessed in 2003 U.S. dollars.

The second hypothesis assumes that no mitigation measure is given to houses affected by flood damages during the simulation. Upon request by the PFEG, the model allows that a house having suffered damages (structure or content) could suffer further damages during the next flood event, whether or not the owner has taken steps to mitigate the risks of future flooding.

The analysis has assumed that ship traffic and wind-wave conditions in the River are the same as those observed over the last decade; any large-scale changes to ship traffic, such as deepening and expansion of the Seaway beyond its current dimensions, have not been considered in this analysis. Trends in increasing ship size downstream of the Port of Montreal have not been considered in this analysis.
5. Key Trends

Construction along river banks and within the floodplain will be more and more controlled given the increasing efforts of governments and municipal authorities to limit this type of development. As a case in point, the construction rate within the floodplain has greatly decreased in the Lac St. Louis area and between Montreal and Sorel, and this trend is likely to continue. However, the regulatory mechanisms have a much more moderate impact in the Sorel Islands area, where the density of houses within the floodplain is increasing. On the other hand, the newly built houses in the floodplain are better protected against flood damages.

In the coming years, it is expected that residential development will occur mostly within areas, determined by the development plans, that are known as residential development priority zones. These zones are adjacent to existing urban perimeters, generally away from river banks and the floodplain. However, the potential development of some sectors of the floodplain of the St. Lawrence River is not completely excluded, due to the existence of mechanisms that permit construction in floodplains under certain conditions.

Areas of moderate urban density are experiencing growth through new residential construction, and it is likely that a small amount of this growth will be in the floodplain. Also, construction of cottages on vacant land is continuing to occur in areas with existing cottages, and it is expected that this trend will continue, especially in the Sorel–Trois-Rivières reach. Also, over the past thirty years, there has been a trend towards conversion of seasonal cottages to permanent residential dwellings. Many cottages still remain in some areas, and it is likely that this trend will also continue.

In heavily urbanized areas such as Montreal and Longueuil, most of the available land along the River has been developed and there is very limited potential for additional development in these areas. Although this cannot be qualified as a significant trend, it is not uncommon for a modest cottage (or 2 or 3 cottages) to be torn down and replaced with a large house worth several times the value of the original cottage(s).

Generally, the properties at high risk of being regularly flooded have a reduced tax list value and constitute a significant fiscal shortfall for local authorities (cf. Section 3). Although they are devalued, the market value of these properties has historically followed overall real estate market fluctuations, some properties having seen their value grow five-fold over the past decade (Radio-Canada, 2004).

Areas of the natural environment that are protected by virtue of their legal status (protected sites) are not at risk of being affected by development in the future. There is a trend in some areas to an increase in the amount of protected natural areas.

Increasing ship traffic effects due to size of vessels (downstream of Montreal) and the effects of possible ship channel deepening could have a major effect on erosion processes and associated shore protection costs on the River. The intensity and extent of erosion and shore protection impacts are directly linked to the size, speed and number of ships using the waterway—changes in the waterway and the ships that use it can have direct impacts on the shorelines. Speed controls such as those presently in place downstream of Montreal are one of the key elements in reducing erosion due to ship traffic. The effects of ship wakes on erosion are inexorably linked to the water levels in the River: river banks are generally more susceptible to erosion during periods of high water levels.
6. Expected Consequences of Changes of Regulation

It is unlikely that there will be any significant movement of residences out of the floodplain. Also, residential construction within the 20-year return floodplain will be almost nil, considering the control applied by government authorities. In the 100-year return floodplain, residential development is likely to continue although it will remain a rather limited phenomenon. Nevertheless, we estimate at 375 the number of new houses that could be built within the 100-year return floodplain in the next 15 years. However, these houses will be better protected against flood damages. Also, the existing houses are likely to become better protected over the years.

Obviously, all these phenomena will induce an increase in the economic value of the dwelling stock within the floodplain. The number of single-family homes within the floodplain is likely to grow above 6,000 units over the next 10 years.

The combination of increased erosional pressures (due to shipping) and increased public concern over environmental degradation could result in a change in the manner in which this waterway is used. Navigation management will likely have to consider shoreline responses as a key component of channel design and traffic control. Mitigation measures related to any navigational changes will probably have the effect of increasing the amount of protected natural shoreline and wetland habitat. This may necessitate the construction of shore protection works to protect sensitive areas.

7. Adaptive Behaviours

In general, the major benefit of the construction of flood modification measures is a decreased cost of flood damage to properties protected by the measure. In spite of the fact that mitigation measures also decrease the emotional, social and psychological trauma experienced by residents in times of flooding, this Study has shown that riparian owners on the lower river do not automatically apply mitigation measures to their property after a flood event, regardless of the severity of the damages (Doyon et al., 2004).

As an example, significant damages have been reported after much less noteworthy floods than the two major flood events of 1974 (recurrence at the Sorel hydrometric station: 1 in 18 years) and 1976 (1 in 300 years). In order of importance, the following is a list of the dates of other minor floods for which damages have been recognized (but mostly in the Sorel Islands and around Lac St. Pierre):

- March 31, 1998 (1 in 5.5 years),
- February 23, 1981 (1 in 2.5 years),
- May 10, 1983 (1 in 1.9 years).

The previous example illustrates that mitigation measures are not automatically applied by property owners. If mitigation measures had been applied by all property owners who suffered severe flood damages during the flood of 1976, the following minor floods would have caused only minor damages, if any. However, we recognize that some property owners will want to eliminate all future hazards after a major flood event. Other property may consider the indemnity paid by government authorities as a type of insurance policy, which would explain why mitigation takes place gradually.

That being said, none of the selected performance indicators described above involves adaptive behaviour on the part of the riparian owners. Again, this does not mean that adaptive behaviours or application of mitigation measures by shoreline property owners does not happen.
Finally, from a computational standpoint, it must be said that the application of a mitigation factor is quite straightforward when the building-to-building approach of the detailed models is used. However, a progressively applied mitigation factor might not be as simple to implement when in the form of an SVM equation that expresses the damages for a whole municipality.

8. Risk Assessment/Sensitivity Analysis

Some environmentally significant wetlands and habitats exist in the lower St. Lawrence that are sheltered by small islands close to the ship channel (e.g. the Contrecœurs region). These small islands are presently eroding. Should these islands be completely eroded, large wetland areas would lose their sheltering and become exposed to wind waves, ship wakes, and currents that could disrupt their ecosystem and result in significant habitat loss (due to changes in bed sediments and vegetation patterns).

There are many residential properties along the St. Lawrence River that have been only marginally affected by flooding in the past. For example, around 440 cottages are situated on the Sorel Islands. Most of them are on piles and are located in the floodplain of the River. An increase in peak water levels/flows in these areas will cause extensive property damage and human displacement.

In the same line of thought, many residential properties along the River are only slightly removed from the 100-year floodplain limits. The number of residences situated at the outer limits literally explodes: from less than 6,000 within the floodplain, the number of homes rises to over 60,000 near the perimeter of the floodplain (approximately 0.5 km (0.3 mi) above the floodplain limits). Obviously, the effects of water levels exceeding the actual 100-year mark would be dramatic in terms of property damage.

The stage-damage curves produced for the lower river are calibrated for the regulation plan actually in effect. The curves are representative of the risk that the property owners are willing to assume at the present time, considering the expected water level fluctuations. Should the IJC implement another regulation plan that would suddenly cause drastic changes in the water levels—in turn causing houses that were not usually at risk to be regularly flooded—then it is expected that property owners would react differently. In these circumstances, it might be appropriate to adapt the flood damage assessment method by including the application of a mitigation factor.

Finally, it is important to note that the damage functions cannot be used to assess the damage resulting from flooding due to the presence of an ice jam. Nevertheless, ice jams remain a significant factor in flooding, especially during winters with heavy snowfall or severe cold. For instance, in 1993, some 39,450 people were displaced, and assets worth an estimated $1.5 billion (not including municipal, industrial and agricultural producer losses) were damaged when an ice jam affected the St. Lawrence and its tributaries (Fisheries and Oceans Canada, 2005).
9. References

Fisheries and Oceans Canada. Canadian Coast Guard (2005). Regional Perspectives, [Online]. URL Address: http://www.ccg-gcc.gc.ca/helicopter/regional_e.htm#q. (Page consulted on Date – April 6, 2005).

10. Review Process

Authors: Bernard Doyon and Jean-Philippe Côté, Environment Canada – Quebec Region; Neil MacDonald and Michael Davies, Pacific International Engineering

Reviewed by: Ralph Moulton

Received TWG Support: April 25, 2005

External Review: PFEG and EAC
D. Commercial Navigation Technical Work Group Summary

The Commercial Navigation Technical Work Group (CNTWG) developed planning objectives and metrics, performance indicators and evaluation methodologies to evaluate the impacts on the U.S. and Canadian commercial navigation industry of alternative Lake Ontario outflow regulation plans. Changes in Lake Ontario outflows change water levels and velocities/currents in the Lake Ontario–St. Lawrence River System, which has impacts on commercial vessels transiting through this area.

Three key geographical areas were identified for which impacts on commercial navigation were developed: 1) Port Weller to Cape Vincent (Lake Ontario); 2) Cape Vincent to the Seaway entrance at Montreal Harbour (the St. Lawrence Seaway); 3) Montreal to Batiscan (St. Lawrence Ship Channel). Impacts from high Lake Ontario outflows, impacts from low Lake Ontario outflows, and impacts from the timing of discharges were developed for each of the three (3) geographical areas. Ice management operations, especially in the downstream area (Montreal to Batiscan), also have an impact on commercial navigation.

Objectives

The Commercial Navigation Work Group developed the following planning objectives for their interest:

- Optimize water levels and currents to minimize damages, maximize benefits and maintain navigational safety, without exceeding flood thresholds.
- Minimize extremes in water levels and velocities in terms of amplitudes and frequencies of variations to provide stability and predictability, in order to optimize long-term cargo load planning for commercial navigation.
- Maintain velocities in a safe range for commercial navigation.
- Maximize ice cover stability and integrity from Montreal to Batiscan in winter to prevent ice jams and resulting flooding and to maintain navigational safety.

The preferred plan for the Commercial Navigation interests is one that optimizes navigable conditions in Lake Ontario and the St. Lawrence River through Batiscan and balances impacts between the three reaches.

Data Collection and Evaluation Methodology

Baseline information on U.S. and Canadian vessel movements was developed for the study area. The 1995 to 1999 period represented the most recent information available at the time.

Data collection focused on four main types of data: data on commercial vessels, data on vessel trips, data on the cargo carried and data on the ports. This data was used to model economic impacts of various water regulation plans on commercial navigation.

The final database consisted of 28,390 individual vessel trips that took place from 1995 to 1999. The movement data was obtained from the Canadian Coast Guard, the St. Lawrence Seaway and the U.S. Army Corps of Engineers. The trip data included movement for all vessels with a draft equal to or greater than 7 m.

The Commercial Navigation Technical Work Group developed an economic impact model to evaluate integrated impacts on Canadian and U.S. commercial navigation of various Lake Ontario regulation schemes for the Lake Ontario-St. Lawrence River System. The model used the commodity movement database for 1995 to 1999 as representative commodities/tonnage and origins/destinations. The model was built by Innovation Maritime, in collaboration with HLB Decision Economics Inc., Lauga and Associates Consulting Ltd., J.D Pace and Associates Inc., and respective organizations of the Commercial Navigation Technical Work Group members.
Performance Indicators

Commercial navigation looks at the total transportation costs in U.S. dollars vs. water elevation, for the three geographic areas, per quarter-month.

Total transportation cost curves were derived for each quarter-month. Cost estimates were derived from 1995-99 commercial navigation traffic, and represent the best available data on commercial activities, cargo and vessel mix at the time the studies were initiated. The Seaway system in the study years (1995-99) was operating at approximately 45% of capacity in terms of transits. This does not reflect current vessel movements at Montreal, especially container traffic, and may underestimate the impacts on commercial navigation, particularly at Montreal.

Quarter monthly water levels for any alternative regulation plan were converted to daily water levels, assuming a linear interpolation between quarter-monthly data points. Vessel departure dates were used to identify the range of water levels that a vessel would encounter during its transit. These water levels governed the maximum load the ship could carry. The lowest water level encountered during the transit governed ship’s carrying capability. These water levels were compared with the metrics developed for the geographical areas the vessel would transit. These metrics determined whether the vessel had to slow down or stop during its movement. A running summary of total transit times was computed for each vessel. These transit times were then converted to costs using daily vessel operating costs associated with various vessel types. Vessel operating costs were developed for 26 vessel types.

Two component sub-models were developed to isolate commercial navigation costs arising from three factors: costs due to ship transits based on tons carried according to available water levels; costs due to currents; and costs due to high gradient delays. Sub-model a) tracked a vessel through its movement and kept track of all three potential costs and the hours of travel associated with these three costs. Sub-model b) converted these hours of transits to dollars. Currents encountered during a movement affected vessel speeds and thus total transit times. Gradients encountered during a vessel movement also impacted total transit times. If specific gradients were exceeded during a voyage, the vessel would stop until the gradient returned to a level below the target gradient.

Baseline Economics – Commercial Navigation

The St. Lawrence Seaway opened in April 1959. In combination with the eight locks on the Welland Canal, the Seaway allows ocean-going vessels and lakers up to 23.8 m (78 ft) in width and 225.4 m (740 ft) in length to access all of the Great Lakes. The Montreal-Lake Ontario section of the Seaway is an integral part of this system. This section encompasses a series of seven locks, which allow ships to navigate between the lower St. Lawrence River and Lake Ontario. The system serves the area called “the Midcontinent region,” which constitutes the industrial and agricultural heartland of North America. This area encompasses eight Great Lakes states, and the provinces of Ontario and Quebec. The system also serves the large Canadian mining operations in Quebec and Labrador, as well as large metropolitan areas located along the St. Lawrence River in the province of Quebec.

Overall, imports and exports to, from, and within the region average some 146 billion tonne-kilometres (100 billion ton miles) annually. Over 27 million tonnes (30 million tons) per year, representing some 2,950 ship movements, are shipped annually through the Montreal-Lake Ontario section of the system. Montreal Harbour is the most important container port in eastern Canada and one of the fifteen largest in North America, handling about a fourth of the container volume of the New York/New Jersey harbour. According to the Port of Montreal, container traffic grew from about 7.1 million metric tones (7.8 million tons) in 1994 to 10.8 million tonnes (11.9 million tons) in 2004. Vessel size and draft has increased substantially over the past 40 years. Containerized shipping through the Port of Montreal is expanding as part of a worldwide boom of containership trade.
More information on the socio-economic context, potentially significant benefits, key baseline conditions, key trends, etc. applicable to commercial navigation is available in the Commercial Navigation Contextual Narrative (Appendix F of the CNTWG Final Report).

The economic advisors recommended using shipping revenues under Plan 1958-DD as the economic baseline for commercial navigation. However, given that no data was available on average annual commercial navigation revenues, the economic advisors suggested using transportation costs under Plan 1958-DD. This necessary substitution most likely underestimates revenues. Fortunately, none of the candidate plans create losses for navigation (or even significant losses in any reach), so there is no need for an accurate baseline on which to judge whether the loss is disproportionate. The total average annual transportation costs for commercial navigation under Plan 1958-DD are shown in Table D1.

Table D-1: Economic Baseline for Commercial Navigation under Plan 1958-DD

<table>
<thead>
<tr>
<th>COMMERCIAL NAVIGATION</th>
<th>($US million)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lake Ontario</td>
<td>$29.2</td>
</tr>
<tr>
<td>Seaway</td>
<td>$108.8</td>
</tr>
<tr>
<td>Montreal down</td>
<td>$56.4</td>
</tr>
</tbody>
</table>

Analysis

Regulation of Lake Ontario outflows affects commercial navigation on Lake Ontario and the St. Lawrence River through Batiscan, Quebec, by changing lake and river levels and velocities in this portion of the Great Lakes-St. Lawrence Seaway. Impacts on commercial navigation occur not only from these changes but also from the timing of these changes (seasonal and weekly) and the resulting currents and their affect upon ice formation. Commercial navigation impacts can occur at both low and high water level extremes and are also influenced on the lower St. Lawrence River by flow from the Ottawa River.

The hydraulic attributes that negatively impact commercial navigation in each of the three geographical areas were identified. A total of forty-two indicators or metrics were developed to track when impacts to navigation occurred. The indicators were developed for high flow/water level conditions, low flow/water level conditions, timing of discharges and gradients/velocities for each area. Metrics were also developed that would enhance the formation of the stable ice cover important to winter navigation at the Port of Montreal. Impacts on commercial vessels range from increasing vessel fuel consumption and transit times due to strong velocities/currents, reductions in vessel speeds to minimize vessel wakes during high level conditions, stoppage of vessel transits when velocities are too high for safe navigation, reductions in cargo carrying capacity when water levels are low, etc. A complete description of these metrics is provided in the document titled *Planning Objectives and Performance Metrics for Evaluating Impacts of Lake Ontario Outflow Regulation Plans on Commercial Navigation* (Appendix A to the CNTWG Final Report).

The economic evaluation model included the following: origin/destination commodity movement data, the physical system the vessels will use (ports, locks, channels), water level data, ice control parameters, transit times (including speed limits, average lock waiting and transit times and delays), vessel operating characteristics and vessel operating costs. Five major databases were required to run the model: the vessel traffic database; the hydraulic database for each plan; a voyage profile database; a ship operating cost database that includes fixed and variable ship operating costs as well as pilotage fees, Canadian Coast Guard fees and Seaway tolls; and finally an individual vessel operating characteristics database that includes ship length, mid-summer carrying capacity by commodity, tons per inch immersion factor, type of engine, etc.

Vessel operational data is stored about movements on each leg of a journey. A vessel may incur various delays based on the 42 hydrologic trigger levels and gradients. The output of the simulation documents the vessel transit times, including delays, the tonnage carried and the fuel consumption according to the hydraulic conditions encountered by each vessel for the simulation period. The vessel operational data is
then translated into costs. Commercial shipping costs fall under the following three main cost categories: capital costs (vessel replacement costs), operating costs (crew costs, lubes and stores, insurance, maintenance and repair and administration) and voyage costs (fuel costs, Seaway tolls, pilotage charges and government fees). Trip costs are calculated for each vessel trip for each year of the 101-year simulation period. A detailed description of the Economic Impact Model is provided in Impact Evaluation Model for Commercial Navigation on the St. Lawrence and Lake Ontario. Final Report by Maritime Innovation (Sept 28, 2004), which is included in Appendix B of the CNTWG Final Report under separate cover.

The Commercial Navigation Technical Work Group developed their own plan ranking methodology, based on both the average annual transportation cost performance indicator and the 42 hydrologic metrics, to help assess the most favourable plan for this interest. In general, metrics violations will result in vessel speed reductions, draft reductions or vessel stoppages. While these do translate into increases in shipping costs, it is normally preferable, for example, to reduce speeds rather than vessel draft, and predictability/stability were also considered an important factor in determining which plan performs better for the commercial navigation interest. The two areas that seem most sensitive to changes in a regulation plan are costs induced by shipping delays on the St. Lawrence Seaway, and reliability and timing of adequate depths for the Port of Montreal.

Integration into the Shared Vision Model

The Commercial Navigation Model was used to develop transportation cost curves that are used by the Shared Vision Model. These curves, which are regulation plan independent, are used to approximate the total yearly transportation costs, given a set of water levels for each quarter-month. This allowed the Plan Formulation and Evaluation Group (PFEG) to develop a large number of potential regulation plans and assess their impacts on commercial navigation without having to run the very detailed commercial navigation model. The annual transportation costs estimated using these cost curves were determined to be very close to the annual transportation costs that the detailed model would calculate. The curves were developed for water levels in 10 cm (4 inch) increments above and below chart datum at a given gauging station in each of three geographical areas: Lake Ontario, the St. Lawrence River, and Montreal. A description of the generation of these curves is provided in Impact Evaluation Model for Commercial Navigation – Model Improvements for Simulations of up to 100 Years and for Shared Vision Model Inputs, by Innovation Maritime in collaboration with Lauga and Associates (Appendix C of the CNTWG Final Report).

Summary of Key Findings

One of the key findings of the Commercial Navigation Technical Work Group was that there is almost always enough water on Lake Ontario to keep ships fully loaded, so this is generally not an issue in evaluating regulation plans.

There is not much that can be done through regulation during extended drought periods to avoid shallow depths in the Seaway, but there are differences in how well a regulation plan can maintain minimal acceptable depths at the Port of Montreal, and this is a key consideration especially given the dramatic increase in container traffic in the Port of Montreal since 1994.

Costs induced by shipping delays on the St. Lawrence Seaway portion of the system are sensitive to various regulation plans and key to the evaluation of alternative regulation plans.
Participants

Commercial Navigation Technical Work Group

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Lead</td>
<td>Roger Haberly</td>
<td>U.S. Army Corps of Engineers, Buffalo, NY</td>
</tr>
<tr>
<td>Cdn Lead</td>
<td>Luc Lefebvre</td>
<td>St. Lawrence Seaway Management Corp., Cornwall</td>
</tr>
<tr>
<td>Cdn Lead</td>
<td>Anjuna Langevin</td>
<td>The Shipping Federation of Canada, Montreal, QC</td>
</tr>
<tr>
<td>Cdn Lead</td>
<td>Ivan Lantz</td>
<td>The Shipping Federation of Canada, Montreal, QC</td>
</tr>
<tr>
<td></td>
<td>Jean-Luc Bedard</td>
<td>Port of Montreal, Montreal, Quebec</td>
</tr>
<tr>
<td></td>
<td>Pat Vincelli</td>
<td>St. Lawrence Seaway Management Corp., Cornwall</td>
</tr>
<tr>
<td></td>
<td>Thomas Lavigne</td>
<td>St. Lawrence Seaway Management Corp., Cornwall</td>
</tr>
<tr>
<td></td>
<td>Jerome Faivre</td>
<td>Transports Quebec, Quebec</td>
</tr>
<tr>
<td></td>
<td>Stephane Dumont</td>
<td>Canadian Coast Guard, Quebec City, Quebec</td>
</tr>
<tr>
<td></td>
<td>Dennis Robinson</td>
<td>U.S. Army Corps of Engineers, Ft. Belvoir, VA</td>
</tr>
<tr>
<td></td>
<td>Flavio D’Agnolo</td>
<td>Canadian Coast Guard, Ottawa, Ontario</td>
</tr>
<tr>
<td></td>
<td>Chantal Ouellet</td>
<td>Transport Quebec</td>
</tr>
<tr>
<td></td>
<td>Pierre Rouleau</td>
<td>Canadian Coast Guard, Quebec City, Quebec</td>
</tr>
<tr>
<td></td>
<td>Stefan Routhier</td>
<td>Montreal Port Authority, Montreal, Quebec</td>
</tr>
<tr>
<td></td>
<td>Ed Eryuzlu</td>
<td>Canadian Secretariat, Ottawa, Ontario</td>
</tr>
<tr>
<td></td>
<td>Ivan Lantz</td>
<td>The Shipping Federation of Canada, Montreal, QC</td>
</tr>
<tr>
<td></td>
<td>Marc Hudon</td>
<td>Chicoutimi, Quebec</td>
</tr>
<tr>
<td></td>
<td>Tom McAuslan</td>
<td>Oswego, NY</td>
</tr>
<tr>
<td></td>
<td>Scott Tripoli</td>
<td>Manlius, NY</td>
</tr>
<tr>
<td></td>
<td>Michel Turgeon</td>
<td>Montréal, Quebec</td>
</tr>
</tbody>
</table>

Board Liaison

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed Eryuzlu</td>
<td>Canadian Secretariat, Ottawa, Ontario</td>
</tr>
</tbody>
</table>

PIAG Liaisons

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ivan Lantz</td>
<td>The Shipping Federation of Canada, Montreal, QC</td>
</tr>
</tbody>
</table>

References

Planning Objectives and Performance Metrics For Evaluating Impacts Of Lake Ontario Outflow Regulation Plans on Commercial Navigation, report prepared by the Commercial Navigation TWG.
D. Commercial Navigation Contextual Narrative

1. General Socio-economic Context

a. Production value of the interest

The Great Lakes and their connecting channels, the St. Lawrence River and the Gulf of St. Lawrence, provide a continuous deep-draft waterway from the Atlantic Ocean into the heart of the North American continent. Basically, the Great Lakes-St. Lawrence River Navigation System can be described as follows:

1) From the Atlantic Ocean to just downstream of Quebec City, the system is a deep draft waterway. Transhipment facilities in that section of the river are among the deepest drafts in the world.
2) From just downstream of Quebec City through Montreal Harbour, the system is defined as the St. Lawrence Ship Channel, with a 10.7-m (35.1 ft) to 11.3-m (37.1-ft) draft waterway.
3) From Montreal through Lake Superior, the system offers an 8.23-m (27.0-ft) deep waterway.
4) The Montreal-Lake Ontario section of the St. Lawrence River, with a total of seven locks, provides a lift of about 70 m (229.7 ft).
5) Lake Ontario is connected to Lake Erie by the Welland Canal and its 8 locks, which provide a lift of about 99 m (~325 ft).
6) From Lake Erie to Lake Michigan-Huron, the waterway is the natural and dredged channels of the Detroit River, Lake St. Clair, and the St. Clair River. There are no locks required to assist navigation in that section of the waterway.
7) From Lake Michigan-Huron to Lake Superior, the waterway rises about 6.7 m (22.0 ft) by way of St. Mary’s River and five locks, all located at the outlet of Lake Superior.

On average, Great Lakes ports enjoy a nine and one half month ice-free navigation season. The Montreal and downstream ports of the St. Lawrence River are open year round.

In the United States, at the south end of Lake Michigan, the Great Lakes-St. Lawrence River Navigation System connects with the Mississippi River Inland Waterway System, which has about 3,100 km (1,926 mi) of navigable shallow draft channels and provides barge transportation through the Gulf of Mexico. The Great Lakes-St. Lawrence River Navigation System also connects with the New York State Barge Canal near Buffalo, New York, to provide a shallow draft link between the Great Lakes and U.S. east coast ports (Atlantic Ocean) via the Hudson River.

In Canada, the Rideau, Trent, and Ottawa Canal systems link the hinterland with the Great Lakes and the St. Lawrence River. In addition, the shallow draft Richelieu-Champlain Waterway provides a connection between the Hudson River (U.S.) and the St. Lawrence River just downstream of Montreal.

With 90 commercial harbors and ports located throughout it, the Great Lakes St. Lawrence River Navigation System is one of the World’s major waterborne systems. Today, this integrated navigation system serves miners, farmers, factory workers and commercial interests from the western prairies to the eastern seaboard. The annual commerce exceeds 180 million tonnes (198 million tons). For every tonne of cargo, there are scores, and often hundreds of human faces behind the scenes.¹ Marine commerce on the Great Lakes/Seaway System each year generates more than $4.3 billion in personal income, $3.4 billion in transportation-related business revenue and $1.3 billion in federal, state, provincial and local taxes. Approximately 10,000 tonnes (11,000 tons) of general cargo handled by a Great Lakes port contributes more than half a million dollars in local economic benefits.

¹ The St. Lawrence Seaway Management Corporation Annual Report 2002/03
b. Number of stakeholders

The St. Lawrence Seaway opened in April 1959. In combination with the eight locks on the Welland Canal, the Seaway allows ocean-going vessels and lakers up to 23.8 m (78 ft) in width and 225.4 m (740 ft) in length to access all of the Great Lakes. The Montreal-Lake Ontario section of the Seaway is an integral part of this system. This section encompasses a series of seven locks, which allow ships to navigate between the lower St. Lawrence River and Lake Ontario. The St. Lawrence Seaway portion of the system has moved more than 2.1 billion tonnes (2.3 billion tons) of cargo in 40 years, with an estimated value of C$258 billion (US$173 billion). The Seaway supports 75,000 direct and indirect jobs in Canada and 150,000 jobs in the U.S.

c. Organizational characteristics

The Great Lakes/St. Lawrence Seaway corridor is unique for the scale and sophistication of its market and the extensive integration of its economy. The system serves the area called “the Midcontinent region,” which constitutes the industrial and agricultural heartland of North America. This area encompasses eight Great Lakes states, and the provinces of Ontario and Quebec. The system also serves the large Canadian mining operations in Quebec and Labrador, as well as large metropolitan areas located along the St. Lawrence River in the province of Quebec. This area is home to almost 100 million people, a third of the combined U.S-Canada population. On the Canadian side, Ontario and Quebec represent over 60% of Canada’s gross domestic product, while the Great Lakes States generate some 26% of the entire U.S. manufacturing base.2

The Midcontinent of North America is a highly productive area. It produces about 34% of the combined gross national products of the United States and Canada, one third of their capital investments and about 30% of their combined personal incomes. Its industrial and agricultural based economy accounts for about 37% of values added to manufacture in Canada and the United States and, over 42% of the two countries’ total agricultural income. The agricultural sector is concentrated on grains, livestock, dairy and poultry products, with much of this production being surplus to the area’s requirements. At the same time, the region is a net importer of light and diversified industrial products together with fibre, fish, and forestry products.

The Midcontinent region depends heavily upon transportation, initiating about 42% of the total tonnage of rail freight in the United States and about 45% of the rail movement in Canada. It is also the destination of over 41% of the shipments of the United States, and 38% of those in Canada. The Midcontinent is also strategically located for both nations, as it is the centre through which most of the other east-west interregional traffic and much of the north-south contiguous trades must flow. The United States portion of the Midcontinent generates over one-third of that nation’s exports of manufactured products.

Overall, imports and exports to, from, and within the region average some 145 billion tonne-kilometres (100 billion ton miles) annually. Over 27 million tonnes (30 million tons) per year, representing some 2,950 ship movements, are shipped annually through the Montreal-Lake Ontario section of the system. Since 1959, over 175,000 transits have been made through the St. Lawrence River above Montreal.

About 85% of the total tonnage carried on the waterway is iron ore, coal, limestone and grain. The remaining 15% of the traffic includes overseas general cargo such as petroleum products, newsprint, rock salt, iron and steel products, cement, chemicals, and many other goods.

2 Great Lakes – St. Lawrence Seaway System Directory 2003/04
In Canada, a large proportion of the Great Lakes commerce, particularly grain (downbound) and iron ore (upbound) transits the St. Lawrence waterway to and from ports on the lower St. Lawrence River. The Montreal Harbor facilities annually handle over 20 million tonnes (22 million tons) of cargo. Montreal Harbour is also the most important container harbour in Canada and one of the most important in North America.

d. Values and perceptions of the interest

In terms of environmental impacts, studies have demonstrated that ships emit one-tenth the environmental pollution of trucks and half that of trains. Seaway ships move a tonne of freight up to 800 km (497 mi) on 4 litres (1 U.S. gallon) of fuel. Marine transport produces less noise, less waste and less traffic congestion. Marine safety and spill records are far superior to rail and truck transportation: one marine accident for every 13.7 rail and 74.7 truck accidents and one marine spill for every 10 rail and 37.5 truck spills.

e. Significant statutory, regulatory and policy restrictions

The signing and application of the Kyoto Accord may have significant impacts on the shipping industry. On the one hand, due to its low emissions per tonne-km, the marine sector is in an enviable position as an alternate transportation mode. Short-sea shipping is seen as having significant potential to reduce highway congestion and vehicular emissions, and is a viable alternative and complement to rail and truck transportation. On the other hand, decisions to close coal-fired electrical plants in Ontario Canada would reduce or eliminate the need to transport coal to these plants. The ongoing Great Lakes-St. Lawrence Seaway Study will assess the maintenance and capital requirements of sustaining and optimizing the Great Lakes St. Lawrence Seaway System and the existing marine transportation infrastructure on which it depends. The results of this study will have to be monitored closely. There is also generally an increasing demand for a longer navigation season.

f. History of the interest

The Seaway is a competitive mode of transport for a wide variety of bulk products (iron ore, grain, coal) serving Canada and the U.S., as well as steel products, heavy lift equipment and project cargoes going to and from Europe. Several Great Lakes ports are closer to European markets than east coast or gulf ports. Typically Great Lakes ports have lower port costs than competing ocean ports for the handling, wharfage, dockage and stevedoring of grain, iron ore, steel coils and machinery. Stevedoring costs for steel products are around US$2.20 per metric tonne lower at Great Lakes ports. Prevalent Seaway trade patterns include the following:

- Upbound movements of general cargo, including semi-finished steel in the form of slabs, coils, beams and other products, from overseas producers.
- Upbound movement of iron ore from mines in eastern Canada.
- Downbound shipments of export grain by Canadian bulkers to transshipment points on the lower St. Lawrence, and by ocean vessels for direct export overseas.
- Approximately 29 million tonnes (32 million tons) of cargo were shipped via the Montreal-Lake Ontario Section of the Seaway in 2003, and approximately 32 million tonnes (35 million tons) were shipped via the Welland Canal. The removal of steel tariffs will help the Seaway to return to its classic trading patterns.
- Traffic at the Port of Montreal is expected to grow from the 23.6 million tonnes (26 million tons) moved in 2004. Growth is expected to be derived mainly in the container sector and through an increase in liquid bulk traffic.

3 A Comparative Study of the Environmental Impacts of Modes of Freight Transport in the St. Lawrence Axis (November 2000)
g. Trade flows and current market conditions

The Port Of Montreal is a year round international port servicing shipping lines that trade with more than 100 countries around the world. The port's main markets are North Europe and the Mediterranean, with increasing penetration into markets in the Middle East and Southeast Asia. The port has also been connected to South Africa by a regular service for many years. The principal ports of origin or destination are as follows: Antwerp, in Belgium; Felixstowe, Liverpool and Thamesport, in England; Rotterdam, in the Netherlands; Hamburg and Bremerhaven, in Germany; Le Havre and Marseilles/Fos, in France; Cadiz and Valencia, in Spain; Genoa, Livorno, Naples and Gioia Tauro, in Italy; and Lisbon, in Portugal.

From Northern Europe and the Mediterranean, Montreal offers the shortest route to the vast markets of North America, which represent a pool of some 100 million Canadian and American consumers. The Port of Montreal contributes to the competitiveness of exporters from North America's industrial heartland and facilitates the supply of raw materials and all types of products to industry in central Canada, the U.S. Midwest and the U.S. Northeast.

The Port of Montreal handles all types of cargo year-round, creates some 17,600 direct and indirect jobs, and generates nearly $2 billion in economic impacts for Montreal, Quebec and Canada. The navigation channel to the Atlantic has a depth of 11.3 m (37 ft) beneath chart datum, which corresponds to the lowest water level. It can accommodate ships of all types and almost all dimensions, including container ships with operating capacities of up to 4,100 twenty-foot equivalent units (TEUs).

Electronic water-level monitors allow deep-draft vessels to optimize their loading. In 2004, the port handled over 23.6 million tonnes (26 million tons), comprised of general cargo, and dry and liquid bulk. More than three-quarters of the Port's total traffic is international. The Montreal Port Authority is an autonomous federal agency that builds and maintains infrastructures leased to private stevedoring companies and operates its own grain terminal, passenger terminal and railway network. The Port has 16 transit sheds for non-containerized general cargo and dry bulk, four ramps for roll-on/roll-off cargo, five dry bulk terminals and a grain terminal, 16 liquid-bulk berths and a passenger terminal for cruise ships. Every year, the Port of Montreal welcomes thousands of cruise ship passengers to its Iberville Passenger Terminal, located in the Old Port and historical district of Montreal.

Montreal is a leader on the North Atlantic container market. About half of its container traffic has its point of origin or destination in the United States. The Port of Montreal topped the one million container mark for the very first time in 2000. The Port handled 10.8 million tonnes (11.9 million tons) of container traffic in 2004, with 95% coming from northern Europe and the Mediterranean. The Port's four modern container terminals feature 15 dockside gantry cranes and other equipment for handling container cargo. Major container shipping lines offer frequent, regular liner services out of the port, and most make Montreal their one port of call in North America. Montreal is a terminus where container vessels can be completely unloaded and loaded, making for considerable savings in time and money.

The Port of Montreal has one of the best intermodal systems in North America. It has its own railway network, with 60 miles of railway tracks. This network provides two transcontinental railway companies (Canadian National and Canadian Pacific) with access to almost every berth, thereby eliminating double handling in transshipment. Both railway companies offer double-stack container service. Approximately 45 trains a week, each averaging 1.7 km (over one mile) in length, leave for such cities as Toronto, Detroit and Chicago. Sixty percent of the Port's container traffic is transported by rail, while some 25 trucking companies carry the remaining 40%. Trucking companies typically serve markets in Quebec, Ontario, New England and the state of New York.
h. Effect of last high or low water conditions

Shipping has changed significantly over the past 40 years. In the early years of the Seaway, the vessel fleet was mainly composed of smaller canalers, and vessel draft was limited to 7.6 m (25 ft). Since then, the fleet of vessels has changed drastically. Vessels of up to 225 m (740 ft) and 23.8 m (78 ft) beam now regularly transit the system. Vessel draft has also increased to 80.8 dm (26.5 ft) for the lake and for specially equipped ocean vessels. For these reasons, the low water events of the 1960s did not have the impact that the same low water level conditions would have today. The lows of the 1960s could mean slower transits and/or reduced draft. In either case, the result is increased shipping costs, which, if conditions were to persist, could impact the general economy. The commercial navigation transportation industry is very competitive, and a slight increase in cost may mean lost business to another mode of transportation.

The channel depths available for navigation are a function of the water levels on the lakes and their connecting channels. Any change in the regime of these levels can have an effect on the cost of shipping of certain commodities in the system. As regulation of the Great Lakes waters can alter, to a certain extent, the Great Lakes-St. Lawrence River water level regimes, it has an influence on navigation.

High water levels are generally more favourable for navigation, unless they are accompanied by high currents. If currents are too fast, conditions may be unsafe for navigation, at which point vessels will be required to stop. This again would have an economic impact on transportation costs. In certain areas, high water levels may increase the susceptibility of certain riparian docks to flooding, and/or expose shorelines to vessel wave action. Traditionally, when water levels reach a certain high level threshold, vessels are required to proceed at reduced speeds, which again increases their transit times and transportation costs. If water levels become extremely high, the Iroquois Lock will be flooded if water levels reach 75.61 m (248 ft) (IGLD 85). At this level, operation of the locks will no longer be possible, and all vessels transiting through the area would stop until water levels return to an acceptable range.

2. Performance Indicators

The performance indicator chosen by the Commercial Navigation Technical Work Group is total cost of transportation associated with commercial navigation between Bécancour, Quebec, and Port Weller, Ontario. Transportation costs include vessel capital and operating costs, fuel costs, seaway tolls, pilotage charges and Canadian Coast Guard fees (marine navigation service and maintenance dredging service fees). Costs do not include port fees and port cargo handling costs. The Commercial Navigation Economic Impact Model provides cost estimates for various plans and uses 1995-1999 commercial navigation traffic, being the best available information at the time.

Total transportation cost curves were derived for each quarter-month for three geographical areas: Lake Ontario (from Port Weller to Cape Vincent), the Seaway (from Cape Vincent to St. Lambert) and Montreal to Batiscan (St. Lambert to Batiscan). These cost curves were incorporated into the Shared Vision Model. Note that impacts can vary significantly within the Seaway for locations above and below the dam at Cornwall.

Quarter-monthly water levels were converted to daily water levels, assuming a linear interpolation between quarter-monthly data points. Quarter-monthly data removes some of the high water, low water and high velocity events and presents more of an average, which will underestimate the economic impacts. Vessel departure dates were used to identify the range of water levels that a vessel would encounter during its transit. These water levels governed the maximum load the ship could carry. The lowest water level encountered during the transit governed the ship’s carrying capability. These water levels were compared with the metrics developed for the geographical areas the vessel would transit. These metrics determined whether the vessel could proceed at normal speed, whether it had to slow down because of high water, reduce its draft due to low water, or stop because of high gradients and flows. A running summary of total transit time was computed for each vessel. These transit times were then converted to costs using daily vessel operating costs associated with one of the 26 various vessel types.
Commercial navigation costs actually arise from three factors: costs due to ship transits based on tons carried according to available water levels, costs due to currents, and costs due to high gradient delays. Commercial navigation costs are affected by water levels in that vessels are required to slow down, light load and/or stop for both high and low water levels. High water velocities/currents, which are represented by gradients between gauges, increase transit times and/or fuel usage for upbound transits. If water velocities become too high, vessels must stop because conditions are not safe for navigation. The cost curves only capture vessel transit costs due to ship loading according to available water levels and travel times and fuel usage based on traveling with or against the currents. Costs related to vessels having to slow down, stop, or offload cargo are calculated by the SVM based on other algorithms. All of these costs are computed by the Economic Impact Model.

Transportation costs can be used to rank plans. However, using transportation costs alone to evaluate/rank plans is not as straightforward as it may seem. Since all plans are compared with 1958-DD, any increase in transportation cost savings is an improvement over the current conditions. There are three possible types of plans with respect to transportation cost impacts: those that provide savings for all geographical areas (Lake Ontario, the Seaway and Montreal), those that provide losses for all areas, and those that provide gains for some areas and losses for others. The system of ranking plans could vary for each of these three plan grouping types. For example, given the following net transportation savings based on preliminary results, Cornell IV would be ranked number one based on total transportation cost savings. Ranking plans by minimizing impacts to all geographical areas and having them share in the losses equally would result in Benefits H being ranked number one.

<table>
<thead>
<tr>
<th>Plan</th>
<th>L.O</th>
<th>Seaway</th>
<th>Montreal</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cornell IV</td>
<td>$28,703</td>
<td>$2,221,285</td>
<td>$52,194</td>
<td>$2,140,388</td>
</tr>
<tr>
<td>Natural A</td>
<td>$42,881</td>
<td>$2,140,535</td>
<td>$83,372</td>
<td>$2,014,282</td>
</tr>
<tr>
<td>Benefits H</td>
<td>$ 5,220</td>
<td>$ 858,903</td>
<td>$ 7,132</td>
<td>$ 846,551</td>
</tr>
</tbody>
</table>

The Commercial Navigation Technical Work Group has identified 42 metrics that can be used to rank various water level plans. The metrics identify at what water level specific impacts happen to shippers. The main link between impact to shippers and water levels is the effects that various water levels have on vessel carrying capacities, vessel speeds and the ability to transit the system.

Characteristically, for a transit through the Seaway, the maximum allowable draft is published and seldom changes. Typically, vessels have been allowed to transit at 7.9 m (26 ft) draft during Seaway opening and closing periods and at 8.0 m (26.25 ft) during the rest of the season. Last year, due to favourable water levels, some vessels were allowed to transit with a 26 ft, 0 in draft. These drafts assume a specific amount of under-keel clearance. Water levels needed to accommodate these drafts are known for various points throughout the Seaway System.

One way to rank various plans is to see how they perform against the 42 metrics identified by the Commercial Navigation Technical Work Group. Counts can be made of how many quarter months, over 101 years of water levels, that critical high levels are exceeded, levels drop below critical low levels and critical velocities/gradients are exceeded. Ultimately, the selection of a plan must be made based on both transportation costs and how well a plan performs based on the metrics. The CNTWG has provided this information to the Study Team so that it could be incorporated in the Shared Vision Model.
3. Potentially Significant Benefit Categories Not Addressed by the Current Performance Indicators (Secondary Impacts)

(a) Environmental benefits of marine transport over other alternative modes

In terms of environmental impacts, studies have demonstrated that ships emit one-tenth the environmental pollution of trucks and half that of trains. Seaway ships move a tonne of freight up to 800 km on 4 litres of fuel. Marine transport produces less noise, less waste and less traffic congestion. Marine safety and spill records are far superior to rail and truck transportation: one marine accident for every 13.7 rail and 74.7 truck accidents and one marine spill for every 10 rail and 37.5 truck spills. Due to its low emissions per tonne-km, the marine sector is in an enviable position as an alternate transportation mode. Short-sea shipping is seen as having significant potential to reduce highway congestion and vehicular emissions, and is a viable alternative and complement to rail and truck transportation.

(b) Benefits to the economies of both the U.S. and Canada

Marine commerce on the Great Lakes-Seaway System each year generates more than $4.3 billion in personal income, $3.4 billion in transportation-related business revenue and $1.3 billion in federal, state, provincial and local taxes. The Seaway supports 75,000 direct and indirect jobs in Canada and 150,000 jobs in the U.S. Moreover, approximately 10,000 tonnes (11,000 tons) of general cargo handled by a Great Lakes Port contributes more than half a million dollars in local economic benefits. The eight Great Lakes states, and the provinces of Ontario and Quebec are home to almost 100 million people, a third of the combined U.S-Canada population. On the Canadian side, Ontario and Quebec represent over 60% of Canada’s gross domestic product, while the Great Lakes states generate some 26% of the entire U.S. manufacturing base.

(c) Other waterborne transportation costs

Following a low water event, or when gradients and currents are such that vessels have to stop, the model assumes that all vessels resume navigation simultaneously. In practical terms, depending on the duration of the event and the number of vessels stopped, the rate at which navigation resumes is limited by the locks’ capacity to process vessels. Consequently, the impacts of excessive flows/gradients or low water will be underestimated for any plan evaluated. This becomes even more important since all water level data used is based on quarter-monthly data. Quarter-monthly data masks high and/or low water and high gradient events that could impact vessel movements. Quarter-monthly data is an average of the water levels during that time period. It takes out the highs and the lows and presents an average.

4. Key Baseline Conditions

a. The impact model does not consider a widening or deepening of the navigation channel, or any changes to the current infrastructure, whether it be locks, bridges or regulating works.

b. The impact model does not consider any changes in fleet composition, which could occur should the infrastructure be changed dramatically.

c. The Economic Impact Model uses actual vessel transit data in the Becancour to Lake Ontario segment from 1995 to 1999 (five years). It is using this same set of five years of data for all 101 years of water levels. It tracks the negative impacts of high and low water levels and high velocities/gradients, i.e.: vessels having to reduce speed, stop, light load or offload cargo.

4 A Comparative Study of the Environmental Impacts of Modes of Freight Transport in the St. Lawrence Axis (November 2000)
5. **Key Trends**

Provided below are historical tonnages for the St. Lawrence Seaway and the Port of Montreal. The Seaway shows a cyclical trend. Near term traffic levels in the Seaway (next five years) are expected to be at least equal to 2003 and 2004 levels. The tonnages moved during the 2004 season are estimated at 30,494,000 tonnes (33.6 million tons).

Montreal tonnages show a moderate growth, most of which takes place in container traffic. Montreal tonnages are expected to continue to grow. Growth is expected to be derived mainly in the container sector and an increase in liquid bulk traffic.
Key trends and issues that may affect the system include the following:

- Continued trend toward containerization;
- Short-sea shipping to alleviate highway congestion and facilitate trade, improve utilization of facilities and reduce greenhouse emissions;
- Demand for year-round service, one stop, door-to-door supply chain logistics;
- Seaway operating at approximately 50% of its capacity;
- GL/SLS Study to be completed;
- Ontario decision to close coal-based electricity production;
- Aging infrastructure – Seaway, Great Lakes Ports, Vessels;
- Fewer Seaway-sized ocean vessels.

6. Expected Consequences of Changes of Regulation

Dependable and predictable water levels within the existing parameters (or better) are required to maintain and possibly grow this segment of transportation. Because of the competitive nature of this industry, low water levels or unacceptably high water levels or flows could negatively impact the shipping industry as a whole and may cause some shippers to use other modes of transportation. Once lost to other modes, regaining this business would be very difficult.

7. Adaptive Behaviours

There are many responses to lower water levels that the shipping community can initiate depending on the magnitude and the duration of the low water event. If a low water event occurs and is anticipated to be of a short duration and only in a very specific area of the system, vessels can reduce speeds in that section and still maintain the amount of commodity carried. This increases transit times but not number of vessel trips. This adaptation also has limitations, since vessels must, at all times, maintain sufficient speed to not impact manoeuvrability and safety.

If the low water event is significant and is expected to last an extended period, vessel draft may be reduced. This will result in increased costs since more trips will be required to move the same tonnage, assuming vessel availability. Generally, the Seaway and the industry can adapt to low water conditions when basin supplies are low for extended periods, as all users must, but plan-induced low levels would not be looked upon favourably.

However, if falling water levels cause large reductions in draft and are anticipated to last for an extended period of time, the last approach is deepening of channels and harbors. This option has many concerns associated with it. The feasibility of dredging would require environmental assessments, including sediment quality, identification of depositional areas, possible containment, defining of costs and who assumes the costs.

For the Port of Montreal traffic, dredging is not an option in the case of a reduction in water column. The last channel dredging ($10M) was undertaken only after four years of debate with environmental groups and agencies. In the extremely unlikely event that the Port of Montreal would obtain permission to dredge even deeper, the cost would be significantly greater since, in some areas, channel bottoms have reached rock and channel deepening would necessitate changes to the port’s existing infrastructure (docks).

Some proactive mitigation dredging was done in 1999 for existing channel depths. The Port funded the total cost of the effort. The dredging was done to accommodate large vessels to handle the growing volumes of traffic, and also to make the route less vulnerable to water fluctuations under 1958-DD. Any plan that would provide less water than 1958-DD would negate the positive impacts of dredging in 1999.
Another adaptive measure to falling water levels is a change in fleet composition. The fleet of vessels calling regularly at the Port of Montreal has been custom designed and built specifically for that trade. The last generation of vessels was built at a total cost of approximately US$1 billion. New vessels are likely to be on the drawing board in the near future, and the design may have to change again to accommodate the ever increasing volumes within the Port's actual draft limitations. The economic gains of building a new fleet will have to be evaluated very closely given that freight rates for exports are 60% of what they were in 1994 and rates for imports during the same period have failed to follow inflation.

As for Great Lakes vessels, the last new Canadian vessel was built in 1985 (MV Paterson). The U.S. has concentrated on modifying its existing fleet (adding self unloading capabilities, and converting vessels to tug barges). There is no indication that the economics of the Great Lakes trade could support a Great Lakes fleet modification.

8. Risk Assessment/Sensitivity Analysis

The following caveats must be identified when using total cost of transportation as the cost performance indicator.

a. The vessel database used to develop this PI (1995-1999 vessel movements) is only representative of the fleet, traffic volumes, and commodity movement patterns within the system at that time. The fleet mix that uses Montreal Harbour has already exhibited a shift to larger sized vessels.

b. Water level data was provided on a quarter-monthly basis. However, daily and even hourly changes in water level can impact vessel movements and loadings. The quarter-monthly data tends to “average out” these impacts and leads to an underestimation of transportation costs.

c. The PI can be used to distinguish a good year of water levels from a bad year. However, usage to determine the ranking of plans is more problematic. Two plans may result in the same average total transportation costs. However, the two plans may not be equal in ranking. A plan that provides a more consistent set of water levels would be preferred to a plan that has extreme fluctuations in water levels. Commodities moving by water require load and schedule planning that ensures that vessels have adequate water depths to accommodate their passage throughout the entire length of their trips. A plan that offers a more consistent set of water levels, provided that the levels are sufficient to maintain existing or deeper vessel drafts, would be preferred to a plan that involves extreme fluctuations in water levels.

d. This PI is also sensitive to seasonality. A plan that provides more water than the current plan, from approximately June through December, would be preferred. This is the time of year when water levels are typically decreasing and tonnage movements are highest.

e. The limiting factors for navigation that are currently recognized in the Impact Evaluation Model throughout the Seaway portion of the system are as follows:

<table>
<thead>
<tr>
<th>Location</th>
<th>Minimum Water Level (metres, IGLD85)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lake Ontario</td>
<td>74.27</td>
</tr>
<tr>
<td>Ogdensburg</td>
<td>73.90</td>
</tr>
<tr>
<td>Cardinal</td>
<td>73.45</td>
</tr>
<tr>
<td>Iroquois</td>
<td>73.35</td>
</tr>
<tr>
<td>Morrisburg</td>
<td>72.79</td>
</tr>
<tr>
<td>Long Sault</td>
<td>72.50</td>
</tr>
<tr>
<td>Summerstown</td>
<td>46.58</td>
</tr>
<tr>
<td>Coteau Landing</td>
<td>46.48</td>
</tr>
<tr>
<td>Lake St-Louis</td>
<td>20.60</td>
</tr>
</tbody>
</table>

5 Planning Objectives and Performance Metrics For Evaluating Impacts of Lake Ontario Outflow Regulation Plans on Commercial Navigation
(2) The maximum gradients that represent velocities that are not safe for navigation are as follows:

<table>
<thead>
<tr>
<th>Location</th>
<th>Maximum Gradients (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ogdensburg-Cardinal</td>
<td>72</td>
</tr>
<tr>
<td>Cardinal-Iroquois HW</td>
<td>26</td>
</tr>
<tr>
<td>Iroquois TW-Morrisburg</td>
<td>46</td>
</tr>
<tr>
<td>Morrisburg-Long Sault</td>
<td>35</td>
</tr>
</tbody>
</table>

(3) Water levels exceeding the following require vessels to slow down to prevent damage to shorelines and shore structures:

<table>
<thead>
<tr>
<th>Location</th>
<th>Maximum Water Level (IGLD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lake Ontario</td>
<td>75.37</td>
</tr>
<tr>
<td>Ogdensburg</td>
<td>75.37</td>
</tr>
<tr>
<td>Morrisburg</td>
<td>74.00</td>
</tr>
<tr>
<td>Summerstown</td>
<td>47.00</td>
</tr>
<tr>
<td>Coteau Landing</td>
<td>46.58</td>
</tr>
</tbody>
</table>

(4) A level of 75.61 m (248 ft) at Iroquois Lock will flood the lock and make it inoperable.

As water levels approach those in the table in (1) above and continue to decline, vessels are required to reduce their speeds, and when levels drop below those in the table, vessels are required to anchor until levels recover. If the levels do not recover, cargo must be offloaded from those vessels before they can proceed. Vessels not yet loaded and headed for the Seaway will be light loaded to accommodate for lower water levels. The drafts in the Seaway have been set at 8.0 m (26.25 ft) since 1994. Recently, vessels have been allowed to transit the system at 8.08 m (26.5 ft) during the summer. Very low water levels for extended periods of time can translate into losses of competitiveness for ports, carriers and other industries that might end up paying more for the transportation of the raw material required for their specific activities. The economic activity of a whole region, state, province or country can therefore be affected by potential increases in terms of unemployment and the price of goods. For example, draft reduction in the Seaway will have the following economic effects:

<table>
<thead>
<tr>
<th>Draft Reduction</th>
<th>Cargo reduction, terms</th>
<th>Loss of revenue, SLSMC</th>
<th>Loss of revenue, Shipping</th>
<th>Cargo reduction, terms</th>
<th>Loss of revenue, SLSMC</th>
<th>Loss of revenue, Shipping</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 cm</td>
<td>40</td>
<td>$80</td>
<td>$800</td>
<td>52,000</td>
<td>$104,000</td>
<td>$1,040,000</td>
</tr>
<tr>
<td>8 cm</td>
<td>320</td>
<td>$640</td>
<td>$6,400</td>
<td>416,000</td>
<td>$832,000</td>
<td>$8,320,000</td>
</tr>
</tbody>
</table>

SLSMC = St. Lawrence Seaway Management Corporation

Vessels transiting areas having gradients in excess of those listed in the table in (2) above will be required to stop until gradients are below those listed. When water levels exceed those listed in the table in (3) above, vessels are required to reduce their speeds to prevent damages to shorelines and shore structures. If the water level at Iroquois Lock reaches 75.61 m (248 ft) (corresponding to a level of 75.56 m (247.9 ft) at the Iroquois Dam Headwater gauge that was modeled in the study), navigation must be suspended because the Lock will be flooded and therefore inoperable.
In Montreal, water levels impact the amount of cargo loaded or unloaded on a deep draft vessel. Ships having a loaded draft of 10 m or less are not considered deep draft and are typically not limited by variations in water levels. The available water is usually sufficient to allow full loading of this type of vessel. However, deep draft vessels, which represent 30% of tonnage transiting the Port of Montreal, require water levels of 0.6 m or more above chart datum in order to be economically viable. During periods of low water levels, such vessels might not be able to carry full cargo loads, or might have to partially discharge in an alternate port if not forewarned of low water levels. Both circumstances cause increased operating costs and reduce effectiveness in service. The Port of Montreal’s competitiveness is therefore greatly affected by variations in water levels.

There is a direct relationship between lake levels and cost of transporting bulk commodities and this relationship is based on the allowable draft of shipping. Lake vessels tend to take advantage of every centimetre of available depth because shippers’ profits essentially come from the last few centimetres of loading. For instance, 2.5 cm of vessel draft on a freighter of 23,000 tonnes (25,000 tons) carrying capacity represent 113 tonnes (125 tons) of cargo. For a 59,000-tonne (65,000-ton) capacity bulk carrier, 2.5 cm would mean a loss or gain of 200 tonnes (220 tons) or about 0.3% of carrying capacity. Similarly, a 30-cm reduction in available draft means that about 114 fewer 6-m containers can be loaded on a typical ship with a capacity of 1,800 containers.

While water levels on the Great Lakes in general are fairly stable, Montreal Harbour water levels are very sensitive to changes made in Lake Ontario outflow at the Moses-Saunders control structure for the purpose of regulation. For example, a 570-m³/s (20,130-ft³/s) flow reduction at Moses-Saunders would result in a drop of about 24 cm in the Harbour at equilibrium, while it would mean a rise of only about 0.25 cm per day on Lake Ontario. This means that, in the fall, when levels are generally at their lowest in the Harbour, the consequences of large Lake Ontario outflow reductions could be disastrous for the Montreal shipping industry, while the benefits provided by such reductions to the navigation interest upstream of the Moses-Saunders project would be negligible.

9. References

The St. Lawrence Seaway Management Corporation Annual Report 2002/03.

A Comparative Study of the Environmental Impacts of Modes of Freight Transport in the St. Lawrence Axis (November 2000).

Planning Objectives and Performance Metrics For Evaluating Impacts Of Lake Ontario Outflow Regulation Plans on Commercial Navigation, report prepared by the Commercial Navigation TWG.
E. Hydroelectric Power Generation Technical Work Group Summary

Objectives

The Hydropower Technical Work Group was charged with evaluating the potential impact of changes to water level and flow regulation on electricity production, the economic impacts of changes in electricity production and other issues that would affect production or maintenance at five affected generating stations.

Data Collection and Evaluation Methodology

There are five different generating stations that can be affected by levels and flows regulation in Lake Ontario and the St Lawrence River—the Moses and Beck generating stations on the Niagara River; the St. Lawrence–Franklin D. Roosevelt (Moses Dam) and Saunders generating stations on the St Lawrence River near Cornwall, Ontario; and the Beauharnois-Cedars complex just upstream of Lake St Louis. Each station is unique in its production characteristics and each is affected by water levels and flows differently. Therefore, the effects of flow regulation on electricity production were evaluated separately for each station. Representatives of the three companies that operate the generating stations served on the Hydropower Technical Work Group and worked with the Plan Formulation and Evaluation Group (PFEG) to develop quantitative algorithms for evaluating how electricity production might change under different regulation plans. Each algorithm was based on existing models already developed by each of the companies. The new algorithms relate Lake Ontario levels and St. Lawrence River flows to megawatt-hour electricity production at each generation station.

In order to assess the economic impact of electricity production, some prediction of likely market prices for electricity was needed. Two initial sets of market price forecasts were used in early plan evaluation exercises. These two initial forecasts highlighted the importance of seasonal variations in electricity prices—large seasonal variations could result in significant differences in the economic impacts of different regulation plans. Therefore, to ensure the evaluation was based on a reliable forecast of market prices, the Plan Formulation and Evaluation Group and the Technical Work Group contracted with Synapse Energy Economics Inc. to conduct a short study of market data. Synapse analyzed hourly price data from the New York market and the Ontario market in combination with futures market prices to produce short-term and long-term forecasts of electricity prices (Synapse Energy Economics, Inc, 2005). The short-term price forecast was used in the Shared Vision Model (SVM) for plan evaluation. Those prices are shown in Figure E-1. Because of the nature of the regulated electricity market in Quebec, a constant price for electricity was used for evaluating the economic impact of regulation plans on the Beauharnois-Cedars generating station. The price used for Beauharnois-Cedars was US$70.47.

Performance Indicators

The New York Power Authority (NYPA) and Ontario Power Generation (OPG) together operate and market the power from the Moses-Beck and Moses-Saunders generating stations. Hydro Québec owns and markets the power produced at the Beauharnois-Cedars generating station. The performance indicators for each company were similar but were modeled separately. The New York price forecast shown above was used for NYPA, while the Ontario price forecast was used for OPG. The flat price for Quebec was used for Hydro Québec.

6 Pursuant to federal and state requirements, most energy produced at the Power Authority St. Lawrence-FDR and Moses power projects is sold pursuant to bilateral contracts at less than market prices. Market price is relevant to energy loss or surplus impacted by alternative regulation plans.
Electricity production

Electricity production at the Massena-Cornwall power project is affected by both Lake Ontario levels and Lake Ontario outflows. Up to a point, higher flows result in more electricity production, but above the maximum efficiency point (approximately 8,450 m³/s (298,400 ft³/s)), increasing flows have diminishing returns. Also, higher Lake Ontario levels generally result in greater station head at Moses-Saunders, which is also linked to greater electricity production. Furthermore, Lake Ontario levels have an effect on the efficiency with which a given flow produces energy. So there is a direct relationship among level, flow and power production. The TWG produced two algorithms to capture this relationship—one for the OPG side of Moses-Saunders and one for NYPA’s side. Each algorithm uses the quarter-monthly flow and Lake Ontario level to calculate the electricity produced (in MWh) for that quarter-month.

Lake Ontario levels also affect electricity production at the Moses and Beck generating stations. Since Moses and Beck are located on the Niagara River above Lake Ontario, higher lake levels actually reduce the station head at Moses-Beck, which results in less energy production. Lower lake levels have the opposite affect. In order to capture this effect, the Technical Work Group provided an algorithm that calculates quarter-monthly electricity production at Moses-Beck based on Lake Ontario levels and other inputs.

Electricity production at the Beauharnois-Cedars complex is primarily dependent on Lake Ontario outflows. Larger flows generally result in more energy production, but flows above about 7,500 m³/s (264,900 ft³/s) produce electricity less efficiently. The Hydro Québec representative on the TWG developed an algorithm for calculating electricity production at Beauharnois-Cedars based on Lake Ontario outflows and other inputs. That algorithm was programmed into the SVM.

The value of electricity production

The market value of electricity varies through the year because of seasonal shifts in demand for energy. Electricity tends to be more valuable during the winter heating season and the summer cooling season, but less valuable in the spring and fall. Regulation plans that produce more electricity in the summer and/or winter will tend to yield greater economic benefits. The quarter-monthly electricity prices produced by Synapse Energy Economics Inc. were used in the SVM to determine the value of electricity produced under different regulation plans. Those prices were applied to the electricity production from both Moses-Beck and Moses-Saunders.
In addition to seasonal variations, the market value of electricity varies within a typical day, also because of changes in demand. Demand tends to be higher during the day and so market prices tend to be higher during the day. OPG and NYPA are allowed by the International Joint Commission to vary flows during the day so that more electricity is produced when it is most valuable, producing an economic benefit. However, the Commission’s rules do not allow these peaking operations when flows exceed 7,930 m³/s (280,000 ft³/s). Plans that tend to have higher flows more often will allow for less peaking and a loss of some of the associated economic benefits. Using hourly price data from the Ontario market, the Plan Formulation and Evaluation Group estimated that the daily value of peaking is approximately US$40,500. The Shared Vision Model tracks the number of days that a regulation plan will allow peaking and, using the estimated daily value of peaking, calculates the economic benefit of peaking operations.

Because of regulation and the reliance on hydropower, the Plan Formulation and Evaluation Group and the Hydro Technical Work Group concluded that the economic value of electricity in Quebec does not vary through the year. Therefore, a constant price of US$70.47 was applied to Beauharnois-Cedars. Electricity production at the Beauharnois-Cedars complex is not affected by peaking operations.

Predictability of Lake Ontario outflows
The hydropower entities periodically shut down some of their turbines in order to perform regular planned maintenance. When Lake Ontario outflows are low, units can be taken out of service without loss of electricity production because all of the water can be passed through the remaining units. Therefore, in order to minimize the opportunity cost of performing unit maintenance, the companies try to schedule maintenance for times of the year when they expect Lake Ontario outflows to be low. If flows unexpectedly spike when units are down for maintenance, the remaining units may not be able to handle all of the flow, and some of the water will then be passed without producing electricity. So predictability of outflows is very important to the ability to effectively and optimally plan unit maintenance.

Hydropower Technical Work Group members concluded that, in general, if flows are premised on Lake Ontario levels then predictability will be high. Therefore, this performance indicator is measured by calculating the correlation between quarter-monthly outflows and quarter-monthly Lake Ontario levels. A higher correlation indicates a higher level of predictability. This metric is important for OPG/NYPA and Hydro Québec.

Stability of Lake Ontario outflows
Stability of outflows is a similar concern to that of predictability, but on a shorter time scale. Stability refers to quarter-monthly changes in flow. The rate of change of flows can affect maintenance planning and efficiency rates. Using past production data, Hydro Québec developed an algorithm for calculating electricity production losses (in MWh) as a function of quarter-monthly changes in outflow. OPG and NYPA concluded that the effect at Moses-Saunders would be similar, but half as large as it is at Beauharnois-Cedars. Using the appropriate price forecasts, the MWh losses are converted to economic losses. The stability performance indicator is measured as an economic loss due to lost electricity production.

Spill at Long Sault Dam
When a plan calls for extremely high outflows that exceed the capacity of the Moses-Saunders Dam, some of the water is passed via the Long Sault Dam. Spill via Long Sault was an environmental concern during NYPA's Federal Energy Regulatory Commission relicensing process. Spill via Long Sault from April to mid-June can negatively impact fish spawning. This performance indicator is measured by tracking the frequency with which a plan causes Long Sault spill during the spawning season, and, when it occurs, the magnitude of the flow via Long Sault.
Ice formation

Ice cover stability is necessary to enable the flows prescribed by the plan to be released throughout the winter. An ice jam will inhibit these releases causing a drawdown in head that could impact municipal water supplies in the vicinity of the Moses-Saunders Dam. The inability to pass the required outflows will cause levels on Lake Ontario to rise prior to the spring melt, adding to high level concerns. In addition, when ice jams release, damage to shorelines and flooding downstream will occur. An unstable cover or ice jam will force power generation to be reduced because flows will be inhibited and the operating head will be reduced. Therefore, managing flows in order to allow formation of a stable ice cover each winter is very important and it is particularly important to the hydropower entities.

Plan 1958-D (as originally formulated without deviations) simply assumes that ice forms throughout January and therefore reduces flows throughout January. In reality, the timing and duration of ice formation varies, and actual operations under 1958-D with deviations address ice formation as it actually occurs. Because this is so important, all new candidate regulation plans include the same ice management rules to reduce flow when and while ice is actually forming. In practice, ice management operations under any of the new candidate plans would continue as they have been conducted under 1958-D with deviations. Therefore, all the candidate plans meet this need equally well and no performance indicator is tracked.

Baseline Economics – Hydropower

The hydropower performance indicators are used to rank plans. They reflect the societal value of marginal differences in electricity production among the candidate regulation plans. The Board asked our economic experts to develop some measure of the scale of that change in relation to the overall scale of the economic activity for the Board’s use in determining if a loss in one sector’s benefits was disproportionate. For hydropower, the experts suggested that the scale of the overall activity is the net economic value to society of all the electricity produced at each of the generating stations (i.e., the economic surplus). Using information provided by the three power companies, and assistance from the Economics Advisory Committee, a producer surplus was derived from the total baseline market value of electricity produced.

The derived numbers should be taken as planning level estimates only and they are merely meant to provide some context for the net benefits results shown in the main body of this report. The actual value of electricity produced and the resultant producer surplus may be different in any given year, depending on market conditions and other factors (see footnote on page E1).

The economic baseline for hydropower under Plan 1958-DD was calculated as the economic surplus measured as net operating revenues minus the economic cost of capital, before deduction of taxes, transfer payments, and special pricing. The numbers derived were similar to those produced in other studies, such as the Federal Energy Regulatory Commission (FERC) relicensing analysis for the St. Lawrence-FDR generating station (Moses). Table E-1 below shows the derived baselines.

Table E-1: Estimated Hydropower Economic Baselines

<table>
<thead>
<tr>
<th></th>
<th>($US million)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HYDROPOWER</td>
<td>$350</td>
</tr>
<tr>
<td>NYPA-OPG</td>
<td>$250</td>
</tr>
<tr>
<td>Hydro Québec</td>
<td>$100</td>
</tr>
</tbody>
</table>
Analysis

Analysis shows that hydropower is best served by regulation plans that tend to keep Lake Ontario levels higher and tend to pass very stable flows with few occurrences of extremely high rates. Higher Lake Ontario levels usually result in greater station head at Moses Saunders, which produces more electricity at any given flow. Higher levels have the opposite effect at Moses-Beck—they reduce station head—but the positive effect at Moses-Saunders is usually greater. Further, stable flows result in high scores for predictability and minimal losses due to instability. Finally, a situation of fewer extremely high flows results in more peaking opportunities, less spill (which does not produce electricity), and less risk of impact on fish spawning at Long Sault.

Key Findings

- Hydropower benefits from high flows through turbines, minimal spillage and higher operating heads, but also from predictable and stable flows. The more minimal the changes in releases from month to month and from week to week, the better the plans will fare for hydro.
- Hydropower benefits are greatest when releases are similar to what would occur without regulation (assuming regulation limits ice jams in winter and early spring). Natural releases create a higher average head at Moses-Saunders, result in very little spillage and tend to be the most stable and predictable.

Participants

<table>
<thead>
<tr>
<th>Hydroelectric Power Technical Work Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Osinski, U.S. Lead</td>
</tr>
<tr>
<td>Sylvain Robert, Cdn Lead</td>
</tr>
<tr>
<td>John Ching</td>
</tr>
<tr>
<td>Cindy Lavean</td>
</tr>
<tr>
<td>Brian Fenlon</td>
</tr>
<tr>
<td>Ian Crawford</td>
</tr>
<tr>
<td>Paul Finnegan</td>
</tr>
<tr>
<td>Marcel Lussier</td>
</tr>
<tr>
<td>Scott Tripoli</td>
</tr>
</tbody>
</table>

Board Liaison

PIAG Liaisons

References

Effect of Operation of the International St. Lawrence Power Project on Shoreline Erosion below Moses-Saunders Power Dam. Executive Summary, NYPA Relicensing Study.

Effects of Peaking and Ponding within the St. Lawrence Power Project Study Area. Executive Summary, Study prepared for the International St. Lawrence River Board of Control ISLRBC.

Effects of Project Operations on Aquatic and Terrestrial Habitats and Biota Downstream of the St. Lawrence-FDR Power Project. Executive Summary, NYPA Relicensing Study.

Effects of Project Operations on Aquatic and Terrestrial Habitats and Biota in Lake St. Lawrence. Executive Summary, NYPA Relicensing Study.

Executive Summary, Assessment of Potential Effects of Peaking/Ponding Operations at the St. Lawrence Power Project on Downstream Muskrat Populations. March 1983 joint NYPA and Ontario Hydro report.

Executive Summary, Assessment of Shoreline Erosion and Marshland Recession Downstream of the St. Lawrence Power Project. March 1983 joint NYPA and Ontario Hydro report.

Shoreline Erosion and Sedimentation Assessment Study Downstream of the Moses-Saunders Power Dam. Executive Summary, NYPA Relicensing Study.

Shoreline Erosion and Sedimentation Assessment Study. Executive Summary, NYPA Relicensing Study.

St. Lawrence Peaking and Ponding. March 1, 2002 presentation to the International St. Lawrence River Board of Control.

Water Level Variations in the St. Lawrence River from Moses-Saunders Power Dam to Summerstown, Ontario. Executive Summary, NYPA Relicensing Study.
E. Hydroelectric Power Generation Contextual Narrative

1. General Socio-economic Context

(a) Production value of the interest
The New York Power Authority (NYPA), Ontario Power Generation (OPG), and Hydro Québec (HQ) are public utilities owned by New York state and the provinces of Ontario and Quebec respectively. The hydroelectric facilities they operate on the St. Lawrence River have a total average annual hydropower production of approximately 25,000,000 MWh (13,000,000 MWh at Moses-Saunders and 12,000,000 MWh at Beauharnois-Les Cèdres). Although the mission of these entities is to produce low-cost power, the market value of the energy produced at these facilities is approximately US$1.5 billion at current market rates.

(b) Number of stakeholders
The energy produced by the St. Lawrence facilities is enough energy for the consumption of approximately 2,000,000 homes.

(c) Organizational characteristics
These facilities are major contributors to the interconnected power grid that services customers throughout the eastern part of North America. Electricity demand varies both seasonally and daily. Energy production at the Hydro Québec facility is consistent throughout the day, while energy production at the Moses Saunders power plant varies to some degree during the day to match demand.

(d) Values and perceptions of the interest
Hydroelectricity plays a significant role in providing clean, inexpensive, renewable energy to the region. The scale of these “heritage electricity generation investments” on the St. Lawrence also contributes to keeping electricity prices low. In New York, several significant industrial users such as ALCOA and GM rely on low-cost electricity from Moses.

Both New York and Ontario have made significant commitments to reduce the use of coal-fired generation and support the use of renewable energy sources. The St. Lawrence plants contribute to the base supply of clean, renewable energy. The ability to vary production to contribute to peak demands further reinforces the important contribution these facilities make to the health and welfare of the region’s population. Air quality is one of the most important environmental concerns in southern Ontario and the northeastern United States. The St. Lawrence hydro facilities provide substantial air quality benefits; if the equivalent amount of energy from these facilities had been generated using fossil fuel, like 50% of the electricity in North America, 18,000,000 tons of CO₂ annually would have been discharged into the atmosphere. State and federal legislation is still evolving to further reduce air quality problems associated with power production, especially acid rain and the carbon emissions that drive climate change. Because overall electricity demand is rising, and environmental concerns may force the closure of some coal-fired plants, Lake Ontario regulation favourable to hydropower production will be more important, not less in the future. Reductions in hydropower production would have to be addressed by greater production from other types of plants, with consequent emissions and cost impacts. Much of the substitution will come from gas turbines, with some from coal-fired plants, both of which produce more carbon and airborne acids than hydropower. Nuclear production is more or less fixed, although there are industry efforts to promote new nuclear capacity.
Regionally, hydropower is seen mainly as a friend. The economy of northern New York state is strongly impacted by the regional allocation of hydropower from Moses to local industry. Hydropower provides low-cost electricity to the ALCOA Aluminum Recycling Plant and the GM Powertrain Production facility in Massena, New York. The importance of hydropower to the sustainability of Northern New York state has been formally recognized by the State’s “Build Now–NY” program, and this will remain true for the foreseeable future. This low-cost power provides approximately 2,000 high-paying manufacturing jobs to the local economy. According to the ALCOA website, ALCOA contributes approximately $250 million annually in payroll, taxes and purchases to the local economy. These jobs are tied directly to the favourable electricity rates the company has with NYPA. NYPA also provides low-cost power to municipalities.

(e) Significant statutory, regulatory and policy restrictions

In the next ten years the most significant statutory, regulatory or policy restrictions directly or indirectly affecting hydropower production at the NYPA facility will be U.S. and New York State air quality laws, which are expected to reduce coal-fired energy production and further limit emissions from fossil-fueled generation, which comprises about 70% of the energy in the New York system. These actions will affect the electricity supply market, increasing the importance of hydropower. NYPA has just completed its FERC relicensing of St. Lawrence-FDR, securing a licence under terms that will apply until 2054. The terms of that license are essentially reflected in the Shared Vision Model so far as they affect performance indicators for this study.

In Canada, the Provincial Government of Ontario has announced its intention to reduce its reliance on coal-fired generation and increase capacity from new renewable energy by 1,350 MW by 2007 and 2,700 MW by 2010. Canada is a signatory to the Kyoto Treaty. Canada’s emission target is a 6% reduction from 1990 levels by 2012. The net impact of these actions will be to increase the importance of hydropower in Canadian markets.

(f) History of the interest

Commercial hydropower production began just upstream of Lake Ontario in Niagara Falls at the beginning of the twentieth century. Initial investments made more than 50 years ago, along with ongoing investments in facility improvement and life extension continue to provide clean renewable energy at a fraction of the cost of other, more polluting sources. Investment in these hydropower assets has provided the economic engine in the region and continues to keep energy prices in the region low.

Because there is no fuel cost associated with hydropower, once the investment in a hydropower plant is made, the additional costs of using the plant to produce energy are much smaller than in the case of other forms of power production. As a result, once hydropower plants are built, their energy production is rarely been reduced because of a decline in energy demand. The value of the energy produced in the long term is affected by the costs of electricity produced by other means and by the price of other energy sources such as natural gas and oil.

All generating sources of electricity have environmental costs, but surveys show that the public served by these three plants generally prefers hydropower production over other means, especially coal and nuclear, which are seen to have greater environmental impacts. Hydro producers, regulators, and water users are challenged to balance electricity production with environmental and social objectives. Concerns about the impacts of hydroelectric development on fish and other users must be balanced against the positive economic and societal benefits hydroelectric generation provides. To minimize the impacts of hydro development and operation on the natural environment, NYPA, Hydro Québec and Ontario Power Generation continue to invest million of dollars annually in science research. An example of this is recent work to reduce the mortality of the American eel as it moves through the St. Lawrence River.
The St. Lawrence power project (NYPA and OPG) is regulated by the International Joint Commission. The New York Power Authority is regulated and licensed by the Federal Energy Regulatory Commission (FERC). The IJC and FERC as well as provincial regulations in Ontario and Quebec mandate that hydropower dams and all related structures be operated safely within design limitations to ensure the stability of the structures and prevent loss of life and property.

Long Sault spills: During the process leading up to the issuance of a new FERC licence for the St. Lawrence project, spills at Long Sault became an issue for several parties. Two specific concerns were raised by NYSDEC (New York State Department of Environmental Conservation) and BIA (Bureau of Indian Affairs): cooler river water spilling into the warmer, shallow-water habitats of the upper end of the South Channel, causing concern for the propagation and survival of warm-water species immediately downstream of the dam, and the potential effects of gas bubble disease (GBD) caused by nitrogen supersaturation.

FERC incorporated these concerns into Article 402 of the new licence, which requires a monitoring plan for water temperature and dissolved gases in the South Channel; advance notification of DEC for all planned spills over Long Sault Dam, notification of DEC regarding any non-planned spills, and annual reporting of monitoring data.

Ice control: The IJC has charged the hydropower companies with forming a stable ice cover. Numerous flow changes are often necessary to help form and protect the ice cover. Since nature dictates when ice forms it is necessary for any regulation plan to be flexible to allow the ice to form and strengthen.

High flow conditions can cause potential flood conditions downstream of the Moses-Saunders project. Minimizing the number of occurrences and the duration of excessively high outflows would be desirable under all plans of regulation.

(g) Trade flows and current market conditions

The demand for energy is strong and growing. Oil and gas prices are fairly high relative to long-term values, and most analysts believe these prices to be essentially permanent adjustments. This is caused by the increased demand for oil worldwide and adjustments in the natural gas market (driven by both regulatory costs and the fact that lower historical gas prices have expanded the use of gas to the point where the lowest cost supplies have been fully subscribed). Given the combination of higher energy prices, the environmental and economic advantages of hydropower, and the well-recognized importance of hydropower to the regional economy, the overall value of hydropower production on the St. Lawrence will almost certainly increase in the next few decades.

The New York Power Authority, Ontario Power Generation and Hydro Québec are all public utilities, owned by New York state and the provinces of Ontario and Québec respectively. While they closely coordinate their operations through the Operations Advisory Group (OAG) of the International St. Lawrence River Board of Control, each operates in very different and independent market environments. The market rules, availability of generation, transmission constraints, demand for energy, and peak and off-peak demand times all contribute to making each of these systems unique.

New York: The New York electricity market is competitive and operated by the New York Independent System Operator (NYISO). The NYISO is a not-for-profit organization formed in 1998. The NYISO facilitates fair and open competition in the wholesale power market and creates an electricity commodity market in which power is purchased and sold on the basis of competitive bidding.
NYISO administers the Day Ahead Market (DAM) and Hour Ahead Market (HAM). The DAM requires that bids and schedules be submitted by 5 a.m. When the DAM closes at 5 a.m., generation bids are evaluated and units are committed beginning with the least expensive generation and progressing to more expensive generation until enough generation is committed to meet the forecasted load. The final unit of generation committed becomes the price for every megawatt during an hour for a given zone. In effect, the system energy price is determined by the most expensive block of power committed to serve the load. In the HAM, bids and schedules must be submitted 90 minutes prior to the hour in which service will start.

Ontario: The Ontario government is restructuring Ontario’s electricity sector to ensure adequate supplies of electricity as well as stable prices. Under the *Electricity Restructuring Act, 2004*, a new wholesale pricing structure has been established that incorporates both regulated and market prices.7

Pursuant to the *Electricity Act*, the Independent Electricity Market Operator (IMO) was re-named the Independent Electricity System Operator, or IESO, effective January 1, 2005. The IESO manages the province’s power system, balances demand for electricity against available supply through the wholesale market and directs the flow of electricity across the transmission system. A not-for-profit entity established by the Government of Ontario, IESO fees and licenses to operate are set by the Ontario Energy Board. The Ontario Power Authority has been created to oversee long-term supply adequacy and the development of a conservation culture in Ontario.

On a continual basis, the IESO forecasts how much power is needed throughout the province and takes in offers from generators and other suppliers to meet that demand. Each day, the IESO issues forecasts of how much energy will be needed throughout the following day and up to the month ahead. These forecasts are continually updated as new information comes in—such as changes in weather. Typically, the IESO’s day-ahead forecasts are highly accurate, with less than a 2% variance from the actual demand figures.

Generators and importers of electricity review the forecast information and determine how much electricity they can supply and at what price. The IESO then matches the offers to supply electricity against the forecasted demand, first accepting the lowest-priced offers and then “stacking” up the higher-priced offers until enough have been accepted to meet customer demands. All suppliers are paid the same price, i.e., the market-clearing price. This is based on the last offer accepted.

The IESO collects bids and offers until two hours before the energy is needed. Based on the winning bids, the IESO will issue its instructions to power suppliers, who then provide electricity to the power system for transmission and distribution to customers. The IESO runs a real-time market, meaning that purchases of electricity are made as they are needed. There are occasions when the best-priced energy may not be available due to limitations on the transmission lines. In this case, that generator’s offer is still used to help set the price, but another generator may be asked to provide the electricity.

Quebec: Hydro Québec does not operate in a competitive market environment within the Province of Quebec. Hydro Québec has implemented a functional separation of its three major business units: Generation (Hydro Québec Production), Transmission (TransÉnergie) and Distribution (Hydro-Québec Distribution).

The Trans-Énergie mission in the market is essentially to transmit electricity at the lowest possible cost and with the expected level of reliability, in compliance with the regulations governing the North American Electric Reliability Council. Hydro-Québec Distribution is responsible for providing reliable electricity service to the people of Quebec and offering services designed to meet customer expectations.

7 Homeowners, small businesses and certain public-sector institutions pay a set rate of 4.7¢/kWh for the first 750 kWh of electricity consumed in a month and 5.5¢ for each additional kWh. Large-volume users pay the fluctuating market rate.
Hydro-Québec Production must supply up to 165 TWh of electricity per year to Hydro-Québec Distribution. Any production exceeding this volume may be sold at market prices. In Quebec, demand for electricity is increasing at an average rate of 1.2% per year. At this rate, Quebec's needs will exceed the heritage electricity pool in 2005. To meet demand beyond this volume, Hydro-Québec Distribution will have to issue calls for tenders from suppliers.

In Quebec, there is no short-term bid system as there exists in New York or Ontario. Nevertheless, Hydro-Québec Production, as well as other producers, can bid in the New York, Ontario or any other market to buy or sell energy.

(h) Effect of last high or low water conditions

High water conditions in the past have generally increased the quantity of energy produced at these facilities, while lower water levels have had the opposite effect. The lowest flows have not historically forced brownouts due to lowered capacity.

2. Performance Indicators

(a) The objectives of regulation for hydropower are as follows:

Maximized power production: The generating units at HQ, OPG and NYPA are designed to operate within a design range. Within this range is a point of best efficiency. It is desirable to operate at the point of best efficiency because this enables the most megawatts to be produced with the water. High flows that exceed the best efficiency result in diminishing megawatt production through the plant. If flows are higher than the capacity of the plant, then the water must be spilled.

Maximized value of the power production: The price of power is determined by the demand for power and the resources available to meet that demand. During the day there are periods of high and low demand. The demand for power is also usually higher during the heating and cooling months than during the spring and fall months. Regulation plans that provide for higher outflows during the summer and winter (with the flexibility for ice formation) and lower flows during the spring and fall will enable more power to be produced during the higher value periods. In addition, the flexibility provided by peaking allows for generation to be varied within the day to match the variation in demand.

Flow predictability: Normally, power entities remove units from service for maintenance during the low flow period or try to match an outage with the expected flows. If units are down and flows increase unexpectedly, the power from that additional flow may be lost. Units that are out of service for maintenance are usually disassembled, which prevents them from being returned to service quickly. Plan 1958-DD is predictable because the outflows are primarily determined by the level of Lake Ontario, which rises and falls in a predictable seasonal pattern.

Flow stability: The metric used in the Shared Vision Model is a measure of the quarter-monthly variation in flow. A plan that minimizes the quarter-monthly fluctuations is preferable to a plan with large weekly fluctuations. This PI complements the flow predictability performance indicator as it allows for critical maintenance planning.

Ice cover formation: A properly formed ice cover allows flows to be maximized during the winter because flow friction and obstruction are minimized. Because stable ice cover is so valuable to so many interests, PFEG believes that all new plans include rules to limit discharges to between about 5,700 m3/s (201,300 ft3/s) to 6,300 m3/s (222,500 ft3/s) during ice formation. At a minimum, plans should be evaluated to determine how often releases outside this range occur during ice formation.
(b) The hydropower performance indicators concerned with flow predictability and stability will be best measured as frequency and duration of occurrences that exceed Plan 1958-DD. As stated in the discussion above, Plan 1958-DD is beneficial to hydropower for these measures because the outflows are dependent on Lake Ontario levels, which are inherently predictable and stable.

The performance indicator that measures the maximization of power (best efficiency) is quantifiable according to the ratings of the generating units. These ratings have been incorporated into the model and can be measured objectively.

The performance indicator that seeks to maximize the value of the megawatts will be determined by several variables. The cost of power, along with the determination of the periods of highest value will be addressed in the model. The Synapse report and historical demand data are available for model inputs. Regulation plans that prescribe flows that seasonally match the demand periods will be preferable. In addition, plans with fewer instances of flows above 7,930 m³/s (280,000 ft³/s) will be preferable in order to allow for peaking. Although the most subjective, this performance indicator also has the potential for understating impacts if the assumptions are incorrect or if they change in the future.

3. Potentially Significant Benefit Categories Not Addressed by the Current Performance Indicators (Secondary Impacts)

The St. Lawrence hydro facilities provide substantial air quality benefits and energy cost savings that are not directly addressed by the performance indicators.

The Federal Energy Regulatory Commission issued a licence for the NYPA's St. Lawrence-FDR Project (Moses) in October 2003. The Final Environmental Impact Statement prepared for that licensing effort estimated the amounts of pollutants that would be generated by a steam-electric facility of equivalent size (SOx, NOx, CO, CO₂, and particulates (FEIS at 4-118).

Table E-2: Approximate Annual Air Emissions from a Hypothetical 800 MW Fossil Fuel Power Plant

<table>
<thead>
<tr>
<th>Fuel Quantity</th>
<th>Coal (ton) 2.8 million</th>
<th>Oil (barrel) 11.2 million</th>
<th>Gas (million cubic feet) 69,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxides of Sulfur</td>
<td>55,000</td>
<td>3,500</td>
<td>170</td>
</tr>
<tr>
<td>Oxides of Nitrogen</td>
<td>25,000</td>
<td>54,000</td>
<td>500</td>
</tr>
<tr>
<td>Carbon Monoxide</td>
<td>1,300</td>
<td>2,900</td>
<td>40</td>
</tr>
<tr>
<td>Carbon Dioxide</td>
<td>6,400,000</td>
<td>5,900,000</td>
<td>4,100,000</td>
</tr>
<tr>
<td>Particulates</td>
<td>170,000</td>
<td>700</td>
<td>NA</td>
</tr>
</tbody>
</table>

1 Air emissions were calculated utilizing EPA AP-42 emission factors and annual production of 6,650 GWh.

The total air emissions offset by the three hydro facilities are approximately three times that presented in Table E-2 above.

Combined cycle gas-fired generation would likely be a major source of replacement power, along with renewables.

Hydropower is a price stabilizing factor in the competitive energy markets of Ontario and New York. While hydropower is bid as a low-cost supply, any replacement power would come from the most expensive source necessary to fill the system demand.
4. **Key Baseline Conditions**

The value of energy estimated in the Shared Vision Model assumes a market similar to that of today, with the same mix of energy producers, and the same influence of the navigational needs of the St. Lawrence Seaway. The near-term expectation is that the market will be at least as strong, with the available production capacity unlikely to outgrow the expansion of the market.

Future energy supply: The hydropower developed by the three facilities affected by the Plan of Regulation is integrated into the power supply of the northeastern states and provinces. Hydropower constitutes approximately 15% of New York’s, 25% of Ontario’s, and 95% of Quebec’s energy supply, respectively. Changes to hydropower production would have to be offset by changes from other types of plants, which have significantly different cost and environmental characteristics. Substitution may come from gas turbines, with some from coal-fired plants; both of these produce more carbon and airborne acids than hydropower, which essentially emits no conventional pollutants. Nuclear production is more or less fixed and is expected to decline over the next few decades as older plants close and no new plants are built.

5. **Key Trends**

Air quality: Air quality is one of the most important environmental concerns in southern Ontario and the northeastern United States. State and federal legislation is still evolving to further reduce air quality problems associated with power production, especially acid rain and the carbon emissions that drive climate change. In the United States, there are several bills under discussion that would amend the *Federal Clean Air Act* to varying degrees. Regardless of what measures might be enacted, all will require stricter emission controls on fossil-fired generation during the 2010-2020 time frame. Although carbon controls remain controversial at the federal level, the northeastern states are moving forward with regulatory programs that would establish a regional cap and trade program for carbon dioxide by 2008.

In Canada, the Provincial Government of Ontario has announced its intention to reduce reliance on fossil fuel generation and increase renewable energy by 1,350 MW by 2007 and 2,700 MW by 2010. Canada is a signatory to the Kyoto Treaty and will be required to reduce carbon emissions beginning in 2005.

The net effect of these actions will be environmental and economic pressure on many of the existing facilities that contribute to the current energy markets in Canada and the United States. “Cheap” existing sources of power will be required to retrofit emission control technologies, or close. Short-term replacement facilities will likely come from gas-fired combustion technologies, which will continue to put upward pressure on gas prices. All jurisdictions in the region are pursuing additional sources of renewable generation (hydroelectric, wind and biomass). Wind technologies will likely be the most widespread renewable in the near term. These facilities, however, produce intermittent generation that does not contribute significantly to the base load or capacity needs of the region in the same manner that the hydro facilities do.

Because overall demand is rising and environmental concerns are expected to force the closure of some coal-fired plants, Lake Ontario regulation favourable to hydropower production will ensure the long-term supply of competitively priced, renewable, clean energy for the foreseeable future and will be more important, not less, as time goes by.

Demand and price: High water conditions in the past have generally increased the value of energy produced at these facilities, while lower water levels have had the opposite effect.
Synapse Energy Economics Inc. developed estimated prices for the electricity generated by the Moses/Saunders and Beauharnois/Cedars hydroelectric stations on the St. Lawrence (Electricity Price Forecasts for St. Lawrence Hydroelectric Generation) to help inform decisions about the regulation and operation of that shared water body:

The primary factors affecting future long-term electricity prices are:

- Fuel Prices
- Technology
- Environmental Factors
- Electricity Demand

There is considerable uncertainty about future fuel prices. The marginal cost of electricity in the US Northeast and Eastern Canada is strongly influenced by the cost of natural gas. In the last several years, there has been a large rise in the price of natural gas as demand has increased for new, clean electrical generation. The consensus view is that natural gas prices will decline from their current highs, but there is no consensus about how much they will decline or for how long. The futures market for natural gas goes out for six years and suggests a 30% decline in prices by 2010, but trading in the futures market very thin in the later periods and based on past history it is not always a reliable predictor of actual prices. Since natural gas demand in North America outpacing production, imported LNG is likely to establish the market price in the future. How rapidly these new supplies can be brought to market is uncertain.

In terms of impacts associated with shifts in hydro generation, the most likely fuel to be displaced when electricity prices are high is natural gas which has a low carbon emission factor. When coal is the marginal fuel with higher carbon rates, the electricity prices are generally lower. To the extent that externalities are fully reflected in emission taxes, then the best policy for hydro plants is to generate more when prices are high and less when they are low.

Much effort has been put forth to determine the long-term pricing of megawatts and the future look of the electric industry. This is valuable to demonstrate the value of hydropower and to give an indication of the cost of replacing hydropower with more expensive substitutes. It does not however, give a true picture of the benefits or losses to hydropower. This is because our mission as a publicly owned entity differs from that of a stockholder owned corporation, whose mission is to maximize profits. Our mission is to provide low-cost, reliable power, and the St. Lawrence hydroelectric plants contribute to this mission by generating low-cost power.

As stated earlier, the cost of the last megawatt of power that is dispatched to serve a load in Ontario and New York becomes the cost of every megawatt in a particular zone for that hour. Inexpensive hydropower reduces the cost the entire load. Any hydropower generation that is removed from the base load would be offset by higher cost generation that would drive up the cost of the entire load.

Peaking and ponding: Megawatts produced from hydroelectric facilities cannot be stored. The value of that generation is directly tied to the demand for it. In the de-regulated electricity environment, the least-cost energy is supplied first (hydro), and more costly megawatts are subsequently added to meet the demand; namely nuclear and fossil fuel. The value of energy in peak can be significantly higher than that of energy off-peak. Energy demand varies on a daily and seasonal basis. The nighttime hours are considered low demand hours; high demand hours are generally from 7 a.m. to 10 p.m. High-demand seasons are typically summer and winter, while lower demand occurs in the spring and fall.
The power entities at Moses-Saunders conduct peaking and ponding operations to better match demand for electricity with its production. In this way, clean, inexpensive hydropower can be used to offset other energy sources. Peaking is the variation of the hourly flow about the daily mean flow so that the total daily flow is equal to that which would have occurred had the peaking not taken place.

Peaking is conducted when the maximum hourly outflows are 7,930 m3/s (280,000 ft3/s) or less. The maximum allowed peaking range is 850 m3/s (30,000 ft3/s) above/below the daily average flow.

Synapse looked at the incremental value of peak period generation. The period evaluated was short term and consistent with the emergence of the competitive markets in New York and Ontario. The company found an average ratio of peak to non-peak energy value of 1.17 for New York, and 1.26 for Ontario; compared with Moses, the Saunders values are higher and there is a much greater seasonal variation in the ratio.

Hydro-Québec makes very few peaking adjustments at Beauharnois-Les Cèdres.

Ponding is the storage of water on Lake St. Lawrence during the weekend for release during the week when power demands may be greater. While the power companies still have the authority to pond, they have done so less frequently over time and rarely do so now. The companies may not reduce flows more than 570 m3/s (20,000 ft3/s) below the average weekly flow on Saturday and Sunday to store water, and may not increase flows during the week more than 230 m3/s (8,000 ft3/s). If the weekly mean flow is above 7,700 m3/s (272,000 ft3/s), the allowances are decreased linearly up to 7,930 m3/s (280,000 ft3/s), at which point no ponding is allowed.

6. Expected Consequences of Changes of Regulation

Because the demand and price for energy is expected to be strong over the next few decades, the importance and value of St. Lawrence hydropower is almost certain to increase. In that light, the Shared Vision Model may well underestimate the future value of energy, but almost certainly will not overstate it.

7. Adaptive Behaviours

Energy demand is increasing, and hydropower will remain an important component of the energy supply in New York, Ontario, and Quebec.

The hydropower infrastructure on the St. Lawrence is a critical component of the International seaway and power project, and represents a significant investment. Hydro facilities will continue to utilize available flows to generate in the most efficient manner possible. Any reduction of generation from these facilities will likely be replaced from a number of sources (combined cycle gas, coal, renewables, etc.) and originate either from the competitive market, or from sources chosen by the respective province or state.

If lower outflows are predicted for an extended period of time, the power entities would take the opportunity to perform maintenance and long-term refurbishment of the generating equipment.

8. Risk Assessment

There is some risk that the value of energy estimated in the shared vision model will underestimate the value of future production from these plants. Substantial changes to the pattern of water supply experienced in the twentieth century could reduce the dependable capacity of these facilities, and capacity benefits are not directly addressed in the Shared Vision Model.
9. References

The Hydroelectric Power TWG has relied on, and previously provided the following documents:

- The Hydroelectric Power TWG response to PFEG economic questionnaire.
- Executive Summary, *Effects of Peaking and Ponding within the St. Lawrence Power Project Study Area* (Study prepared for the International St. Lawrence River Board of Control (ISLRBC)).
- Executive Summary, *Effects of Project Operations on Aquatic and Terrestrial Habitats and Biota in Lake St. Lawrence* (NYPA relicensing study).
- Executive Summary, *Shoreline Erosion and Sedimentation Assessment Study* (NYPA Relicensing Study).
- Executive Summary, *Water Level Variations in the St. Lawrence River from Moses-Saunders Power Dam to Summerstown, Ontario* (NYPA relicensing study).
- Executive Summary, *Effects of Project Operations on Aquatic and Terrestrial Habitats and Biota Downstream of the St. Lawrence-FDR Power Project* (NYPA relicensing study).
- Executive Summary, *Assessment of Potential Effects of Peaking/Ponding Operations at the St. Lawrence Power Project on Shoreline Erosion below Moses-Saunders Power Dam* (NYPA relicensing study).
- “St. Lawrence Peaking and Ponding,” March 1, 2002, presentation to the International St. Lawrence River Board of Control.
- Executive Summary, *Assessment of Potential Effects of Peaking/Ponding Operations at the St. Lawrence Power Project on Shoreline Erosion below Moses-Saunders Power Dam* (NYPA relicensing study).
- *Electricity Price Forecasts for St. Lawrence Hydroelectric Generation* (Final Full Report) David White, Bruce Biewald, Synapse Energy Economics, 22 Pearl Street, Cambridge, MA 02139

Please refer to the following websites for further information:

New York Power Authority: www.nypa.gov

Ontario Power Generation: www.opg.com

Hydro-Québec: www.hydroquebec.com

Ont. Ind. Electricity System Operator (IESO): www.ieso.ca/imoweb/infoCentre/ic_index.asp

10. Review Process

The Hydropower Contextual Narrative was jointly authored and reviewed by the following Hydroelectric Power Generation Technical Work Group participants:

- Sylvain Robert (Hydro-Québec)
- John Ching (OPG)
- Robert Yap (OPG)
- Cindy Lavean (NYPA)
- John Osinski (NYPA)

The Hydropower TWG supports the submission of this document.

External review was afforded to Ian Crawford (Study Board) and Paul King-Fisher (PFEG)

J. L. Osinski
F. Municipal, Industrial and Domestic Water Uses Technical Work Group Summary

Objectives

The primary objective of the Municipal, Domestic, and Industrial Water Uses Technical Work Group (Water Uses TWG) was to assess the impacts of fluctuating water levels in Lake Ontario and the St. Lawrence River on municipal, domestic, and industrial water uses. Among these uses are drinking water treatment plants (WTP) and wastewater treatment plants (WWTP). For the first group mentioned, low water levels are a potential concern as they rely directly on the source to provide drinking water for the population. On the other hand, WWTPs are potentially affected by high water levels as they could limit the discharge into the water body. Similar to water and wastewater plants, industrial facilities could also be affected by extreme water levels, limiting withdrawal or discharge. Domestic (primarily residential) users who withdraw water directly from the Lake or River may also be impacted by water level fluctuations.

The mandate of the Water Uses TWG was to assess the potential impacts of water levels (low and high) on utilities located in the study area (adjacent to Lake Ontario and the St. Lawrence River). PMCL@CDM was hired to focus on Lake Ontario and the upper St. Lawrence River (U.S. and Ontario), and École Polytechnique de Montréal (EPM) was contracted to cover the lower St. Lawrence River (Quebec).

Data Collection and Evaluation Methodology

The two consultant groups performed independent studies, pursuing similar objectives but reporting separate findings that were later integrated. As the accessible information varied from one region to another, the major topics were covered differently and some of them by only one of the two consultant groups. The depth of analysis was also representative of the detailed level of the information gathered as well as of the apparent criticalness of the facilities inventoried. The study performed by PMCL@CDM was based on public sources of information, questionnaires sent to utilities and interviews used to portray the situation of 43 Water Treatment Plants (WTPs) and 79 Waste Water Treatment Plants (WWTPs). As no public database was readily available for Quebec, the EPM project was based on a questionnaire and on-site visits for 30 WTPs and a phone survey for WWTPs. The EPM project did not cover the industrial plants as the information was made available only after completion of the mandate. However, the industrial interests were covered in the PMCL@CDM project. This latter study also included power facilities and shore wells located on Lake Ontario, interest groups that did not have counterparts in the lower St. Lawrence.

The ultimate goal of the studies performed by the two teams was to formulate criteria and performance indicators in order to support the interests of the municipal and industrial facilities in the future Lake Ontario-St. Lawrence River regulation plan.

Water level impacts on WTP and industrial intakes

Low water levels represent a major concern for the Water Uses TWG. First, extremely low water levels could limit the availability of the resource for withdrawal, and second, they could also impact water quality, which could imply greater treatment needs.

To address this issue, questionnaires were sent to WTPs to collect information related to critical water level and problems experienced in the past. The questionnaires asked for information regarding the following:

- water utility characteristics (e.g., treatment capacities and populations served) and physical characteristics of intakes (e.g., intake depth and length);

PMCL@CDM was also supported by two subcontractors: O’Brien and Gere Engineers Inc. of Syracuse, New York, and Earth Tech Canada Inc. of St. Catharines, Ontario.
On-site visits (Quebec, New York and part of Ontario) and phone interviews (Ontario) were also performed to complete the data collection. The EPM project went deeper into the analysis and gathered the information required to calculate critical water levels based on head losses, during on-site visits. Two industrial plants (power plants) located on Lake Ontario were also investigated. Other problems related to water levels, such as frazil ice, were also addressed by both consultants (presented in complete reports).

In the context of low water levels, there was a concern that water quality would be adversely affected due to many phenomena like lower dilution or greater algae development. The water quality issue was addressed by EPM by holding an expert meeting to identify the potential water degradation sources that would be related to water levels. Based on the conclusions drawn during this meeting, the issue was addressed in three different ways: first, through the determination of increased chemical costs due to poorer water quality; second, by examining micro-pollutant concentrations and, finally, by evaluating the costs of treatment upgrades to deal with heavier taste and odour problems in low water level conditions. Taste and odour problems and algae blooms were also documented by the PMCL group and were mostly based on literature review.

Water level impacts on WWTPs and outfalls

Assessing how lake and river elevation potentially impacts wastewater discharges entailed conducting another survey to gather information. For the U.S. and Ontario, the survey activities consisted of developing a survey instrument, collecting baseline data, selecting a survey sample, distributing survey instruments and compiling and analyzing survey results. Surveys targeted major point source discharges in the Lake and River, including public wastewater treatment facilities, industrial discharges and power utilities. For the Quebec portion, a public database was used to position the outfalls and document the characteristics of the utilities. A phone survey was also conducted to obtain information concerning potential problems related to high water levels.

Water level impacts on shore wells and intake lines

The impacts of source water level variations on self-supplied residential water supply systems, such as shore wells and lake intake lines, were investigated in the upper St. Lawrence and Thousand Islands regions by PMCL. To accomplish this task, PMCL gathered and analyzed information from a variety of sources, including the New York State Department of Environmental Conservation (NYSDEC), Environment Canada, homeowners, homeowners associations, well contractors and local health departments. Furthermore, PMCL solicited information from shore-well owners by developing and placing banner advertisements in print media outlets in potentially affected areas so that affected residents could submit information regarding their experiences with lake or river water levels and their shore wells. Based on the preliminary analysis of the problem by the Canadian coordinator of the TWG, which did not identify particular interests in the lower St. Lawrence River, this issue was not addressed there.

Performance Indicators

Infrastructure performance indicator: drinking water production plant infrastructure costs required to adapt to levels lower than the critical levels identified. This performance indicator is based on cost estimations for building new intake structures when the critical level is reached. The costs provided probably overestimate the costs strictly linked to water level problems. Other solutions relieving part of the problem (lowering demand, etc.) would probably be put forward before a new intake is built.
Taste and odours performance indicator: The costs of upgrading municipal drinking water treatment plants to treat taste and odour compounds. Taste and odours are not regulated and are considered an aesthetic problem. However, the problem is a serious nuisance because it affects both the comfort and the confidence of the population. This performance indicator was once again based on cost estimation for the addition of a treatment stage. For this performance indicator to be trespassed, a low water level is needed for three consecutive years (during 1 quarter-month). More research is needed to define a clear link between water level and severe taste and odour problems resulting in investments from municipalities. In this case, the costs are probably underestimated as higher water levels could result in occasional problems, in combination with other factors.

Other municipal and private users impacted by water level (e.g., shoreline wells, groundwater contamination (Wilson Hill area), sewage overload) were evaluated but not represented as performance indicators in the Shared Vision Model. The impacts to those interests were found to be marginal in comparison with the performance indicators defined; however, a full discussion of all issues and problems is included in the analysis section below.

Baseline Economics

One of the Study Board’s guiding principles for ranking a plan is that it should not produce a disproportionate loss in any sector in order to gain benefits in other sectors. In an effort to provide an objective basis for determining whether a loss is disproportionate, the Study Board asked that losses be compared against the overall economic scale of the activity affected. Unlike the other sectors, no estimate was made for the scale of municipal and industrial water use activity because there are no significant losses to this sector with any of the candidate plans.

Analysis

Various issues related to water levels were addressed in these projects. The methodology used to deal with these issues depended upon the type, availability and level of details of the information. The following section presents the types of uses evaluated along with a brief description of what was found.

Lake Ontario and Upper St. Lawrence River

Municipal and industrial intakes

Critical source water levels were defined as water elevations that create concern regarding efficient operation of intake systems. In general, critical levels were reported as the minimum amount of water or “cover” that an operator would prefer to have above an intake crib. In some cases, actual lake levels or deviations from the long-term average were reported. It is important to stress that critical elevations are approximations on the part of facility operators and are not based on site-specific engineering studies.

In New York and Ontario, the presence of algae was the most common problem reported by many water treatment plant operators, regardless of intake depth. Taste and odour problems associated with algae were reported by several water treatment facilities. Taste and odour impacts vary in intensity each year. However, two notable and extended events occurred during late summer in 1998 and 1999 when taste and odour levels were about 10 times higher than historical levels. While it is true that 1998 was a low water year, it is unclear as to whether lake levels were a significant contributor. Research by the Ontario Water Works Research Consortium (OWWRC) suggests that spring warming may be critical.

Only 10 facilities of 30 in Ontario and New York identified a critical water level (i.e., a water level that would create concern regarding efficient operation of intake systems): seven along Lake Ontario and three along the St. Lawrence River. The remaining 20 could not provide a figure since lake or river levels had never been a significant concern. Along Lake Ontario, reported critical levels range from 71.0 m (233.0 ft) to
74.1 m (243.0 ft). Three facilities along the St. Lawrence River upstream of the Moses-Saunders Dam (Ogdensburg, Morristown and Ingleside) reported critical elevations of 73.2, 71.6 and 71.2 m (240.0, 235.0 and 233.6 ft) respectively. When comparing with the record low, Albion (N.Y.) was the only facility along Lake Ontario that reported a critical elevation above this level. In general, most interviewees agreed that variations within long-term averages do not have a substantial impact on the ability of water treatment plants to effectively supply water. The one exception was the Monroe County Water Authority drinking water plant that did report impacts by high water levels which could flood the pumping station. The loss of the pumping station would stop delivery of water to about 650,000 customers. While the Water Authority did not quantify the damages associated with high water level situations, preliminary investigations show that the Authority has avoided this in the past by sandbagging the plant, that water levels that provoke sandbagging will occur a few times a century under the current plan, and that no matter what regulation plan the International Joint Commission selects, Lake Ontario levels will be a few feet higher than the sandbag trigger level during the most extreme wet periods.

On the other hand, low water levels appear to be a significant concern for industrial, and in particular power generation facilities, for two reasons: 1) they affect shipments of raw material including coal, and 2) low water levels can impact intake structures causing loss of pressure for vital cooling systems and may expose intakes to other conditions such as frazil ice that can also threaten cooling systems. Three facilities along Lake Ontario reported a critical low water elevation for adequate head over cooling water intakes: 1) the Russell Coal-Fired Power Station in New York (74.37 m/244.00 ft) and 2), Ginna Nuclear Plant near Rochester, New York (74.37 m/244 ft), and 3) the Darlington Nuclear Station in Ontario (72.0 m/236.22 ft). Both Ginna and Russell, located on the south shore of Lake Ontario, would experience problems within the historical record, and will require upgrading to remain fully operational under high and low water level conditions in the future under any plan, including the existing one. Low level problems are not a problem for the Darlington plant under any plan or supply sequence scenario evaluated, including the climate change scenarios.

Wastewater treatment plants and outfalls

Of the 79 facilities that responded to the survey, 32 reported critical water elevations. The remaining facilities either left the question blank or specifically indicated that they did not know or have the information.

Low critical levels for Lake Ontario range from 74.37 m (244.00 ft) to 67.12 m (220.22 ft). Only two facilities reported low critical levels above the Lake’s record low (73.73 m/241.90 ft), and only one facility noted critical low levels above the lower bound (74.15 m/243.30 ft) of the IJC Orders of Approval.

High critical elevations for facilities along Lake Ontario range from 80.16 m (263.00 ft) to 75.59 m (248.00 ft). Only three facilities reported critical high levels that are below the Lake’s record high of 75.80 m (248.69 ft), and none reported levels that were below the upper bound of the IJC Orders of Approval (i.e., the regulation plan) of 75.37 m (247.29 ft).

Similar to the case on Lake Ontario, critical high water levels at most facilities along the River are relatively high—between 4.14 m (13.58 ft) and 1.05 m (3.44 ft) above datum—while low critical levels are from 0.73 m (2.40 ft) to 15.42 m (50.59 ft) below datum.

Domestic uses

Source water elevation can and does affect self-supplied residential water systems, including shore wells and water intake lines; however, the number of people who use self-supplied systems is small relative to populations served by water utilities.
Determining a critical elevation for plan performance measures for residential systems is difficult given that little documented data exist. However, based on available information, a flurry of complaints from Thousand Islands area residents were filed with Environment Canada in the fall and winter of 1998, and other reports were documented near Massena, New York, during the same time period. Reports were also received in November of 2002 from U.S. residents in the Thousand Islands area. Furthermore, most reported problems from the August 2003 shore well survey appear to have occurred from 1998 onward. At the time the reports occurred, Lake Ontario was at its lowest level in 30 years—a monthly average in November 1998 of 74.40 m (244.03 ft). In 2002, when other reports surfaced in the same geographic area, lake levels were only slightly higher than in 1997—74.46 m (244.30 ft). Therefore, based on available information, a lake elevation of about 74.37 m (244.00 ft) could serve as plan performance measure for shore wells along Lake Ontario. Along the upper St. Lawrence, substantial problems with water levels and lake intake lines were reported beginning in August of 1997 and throughout 1998 along Lake St. Lawrence. Long-term historical data for Lake St. Lawrence (e.g., the Long Sault gauge) were not available at the time this report was written, but the above dates could serve as a reference point for selecting an appropriate critical water level.

PMCL advertised in local papers asking people if they had problems withdrawing water from the River, and the few responses received indicated that people fixed any problems themselves. The Wilson Hill community, which had been affected by this problem, has since obtained municipal water supplies. Although the economic impacts associated with this phenomenon could not be quantified, it was tracked to see how reliably each plan produced water levels above the elevations at which such problems were said to begin.

Lower St. Lawrence River

Municipal and industrial intakes

Based on the survey results, the main problems experienced by water utilities are taste and odour, frazil ice and capacity. Taste and odour and frazil problems are not necessarily directly related to low water levels in all cases but tend to increase in such conditions, according to utilities. A total of 42% of the utilities suffer from taste and odour problems, while 50% experience frazil problems. Capacity limitations in low water levels were mentioned by three utilities out of 30.

The impacts of low water levels on plant operation were characterized by red and yellow production performance indicators. The red production performance indicator describes a severe consequence corresponding to the water level at which a plant will no longer be able to supply nominal capacity using the available infrastructures (i.e. pumping stations and water intakes). Alternatively, the yellow performance indicator describes the water level at which a plant will need to open its emergency intake to supply nominal capacity (i.e., modify its normal operating condition). This performance indicator therefore represents an alarm sign indicating that the nominal capacity of the plant can no longer be maintained by the principal intake. A yellow performance indicator could only be determined for plants disposing of more than one intake.

The critical water levels (red performance indicator) for each plant downstream of Ste-Anne-de-Bellevue are summarized in Figure F-1.

With respect to the red production performance indicator, the plants that are the most affected by water levels are: Lavaltrie, Montreal (Atwater and DesBaillets), Verchères, Pointe-Claire, St-Lambert and Candiac. These seven systems will reach the red production performance indicator at water levels above the worst case scenario studied, which is 1.0 metre (3.3 ft) below the chart datum at Pointe-Claire (70 cm (28 in) below the historical minimum level). These plants represent 23% of the plants investigated (7/30) and more than 74% of the population of the study area (1,720,000/2,320,000). The Varennes WTP would see its normal operating conditions restricted (yellow PI) under the worst water level scenario considered.
A special black performance indicator was defined for the intake structure of Montreal’s Atwater and DesBaillets WTPs. Contrary to the other cities, they are in a unique situation in which capacity is lost gradually. Their red performance indicator means that the nominal capacity can no longer be supplied but 91% of the production can still be distributed. The black performance indicator corresponds to the level at which the Atwater plant is lost completely; at this point, a large portion of the distribution system would be unpressurized.

The impact of water levels on plant capacity can also be expressed with respect to the total number of plants or the total population affected. This information is presented in Figure F-2. The representation highlights the relative weights of each treatment plant with respect to the total population of the study zone.

Municipal and industrial water use has generally not been vulnerable to water level changes, except in 2001, when the critical level of 20.53 m (67.36 ft), with reference to Pointe-Claire, was reached temporarily in Montreal; almost the same situation occurred in 1999 (20.54 m (67.39 ft). The Montreal main water intake pipe, located just below Lac St. Louis, is relatively shallow and situated in uneven, mildly sloping marine topography. Access to deeper water is possible about 400-500 m (437-547 yd) from the actual intake site, but with major constraints to be overcome (strong current, bedrock to dynamite, large pipe) to gain little depth. The City of Montreal rebuilt its emergency intake in 2003 to support its main intake (Atwater and DesBaillets), allowing an increase in total adduction capacity of 21%. Under projected normal conditions, proper operation should be maintained until the 20.53-m (67.36-ft) level is reached, potentially causing a 9% drop in nominal capacity. However, during the next 50 years, with climatic changes, the Montreal major intake (main and emergency) could still be at risk if the chart datum level is reached at 20.35 m (66.77 ft) or lower, with reference to Pointe-Claire.

Figure F-1: Critical water levels (red performance indicator) referenced to Pointe-Claire. Red performance indicators describe the minimum water level required at Pointe-Claire to supply nominal capacity using all intakes available (IGLD 85)
Wastewater treatment plants and outfalls

Contrary to water treatment plants, high water levels were suspected to have an impact on wastewater treatment plants. According to the director of Montreal’s wastewater plant, WWTPs are not really affected by water levels, except in the case of floods (i.e. extremely high water levels). Even in this situation, most of the wastewater outfalls are equipped with check valves protecting them from backflow.

With regard to industrial outfalls, the situation remains unknown in the lower St. Lawrence. However, this issue was addressed in the Lake Ontario/upper St. Lawrence region and the general conclusion is that outfalls are less at risk than water intakes.

Domestic uses

Domestic uses for water supply, like intake lines or shore wells, were not identified as a key issue in the lower St. Lawrence River. No region was identified as having several residences withdrawing water from the River, as is the case in the Thousand Islands region.

Integration into the Shared Vision Model

The research was integrated into the SVM in the following three ways:

1. Economic models;
2. Estimates of the probability, severity and duration of water levels that caused negative impacts on municipal and industrial water uses; and
3. General water level statistical reports that could be used after the study to answer new questions raised by the municipal and industrial water uses community.

First, the STELLA portion of the Shared Vision Model includes modeled estimates of the economic impacts on water quality and water supply. Second, the STELLA model calculates statistics regarding the stages of concern for municipal and industrial plant operators. Water supply response is divided into four categories represented by the colours green, yellow, red and (worst) black.

Third, the SVM was used to produce general water level statistics that could then be applied to questions raised after the reports were completed (e.g., “What is the chance that sandbagging of the Monroe County Water Authority plant will be necessary under each candidate plan?”).
Summary of Key Findings

• Municipal, industrial and domestic water use is generally not vulnerable to water level changes. The Study found that the Montreal system could be at risk later in the century, assuming that climate change induces the dry, hot scenario modeled in the Study.
• Other exceptions are the Russell and Ginna power generating stations and the County of Monroe potable water pumping and treatment plant on the south shore of Lake Ontario in New York state. The two power generating facilities report critical low water elevations for their cooling water intakes at levels within the historical record under the current regulation regime. However, the Study Board was informed that Russell is closing and Ginna would take measures to deal with this design flaw.
• The Monroe water pumping and treatment plant experiences flooding problems at Lake Ontario elevations within the historical maximum range.
• Shoreline wells, groundwater contamination and sewage overload were evaluated in terms of the recurrence of water levels likely to induce these problems, but not in economic terms, since impacts were either small relative to other categories or because plant operators were unable to estimate the impacts.

Participants

<table>
<thead>
<tr>
<th>Municipal, Industrial and Domestic Water Uses Technical Work Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skip Shoemaker, U.S. Lead</td>
</tr>
<tr>
<td>Denis Peloquin, Cdn Lead</td>
</tr>
<tr>
<td>Benoit Barbeau</td>
</tr>
<tr>
<td>Annie Carriere</td>
</tr>
<tr>
<td>John Strepelis</td>
</tr>
<tr>
<td>Christian Gagnon</td>
</tr>
<tr>
<td>Steven Gould</td>
</tr>
<tr>
<td>Brian Kaye</td>
</tr>
<tr>
<td>Eva Opitz</td>
</tr>
<tr>
<td>Stuart Norvell</td>
</tr>
<tr>
<td>Paul MacLatchy</td>
</tr>
<tr>
<td>André Carpentier</td>
</tr>
<tr>
<td>Board Liaisons</td>
</tr>
<tr>
<td>Tony Eberhardt</td>
</tr>
<tr>
<td>Ed Eryuzlu</td>
</tr>
<tr>
<td>Michel Gagné</td>
</tr>
<tr>
<td>Marcel Lussier</td>
</tr>
</tbody>
</table>

References

École Polytechnique de Montréal, Impacts of Level Fluctuations in the St. Lawrence River on Water Treatment Plant Operation, December 2003.

Planning and Management Consultants Ltd., Impacts of Changes in Source Water Elevation on Water Supply Infrastructure: Lake Ontario and the Upper St. Lawrence River – Phase III Report, Shorewell Survey Results and Other Findings to Date, October 2003.
F. Municipal, Industrial and Domestic Water Uses Contextual Narrative

1. General Socio-economic Context

(a) Production value of the interest
There is no production value associated with the use of water for drinking water production, but it represents a very high social cost that can be affected by water levels. A large majority of municipal demand is linked to the residential population as well as to other major installations such as hospitals, schools, commercial centres and buildings; industries also rely on water for production and cooling systems. The availability of water either from municipal water treatment plants or through private intake systems could have serious financial impacts (e.g.: industry closures).

(b) Number of stakeholders
There are 2.3 million residents who rely on the lower St. Lawrence River, and 6.3 million residents who rely on Lake Ontario and the upper St. Lawrence (both Ontario and the U.S.).

(c) Organizational characteristics
The stakeholders are located all along the systems, but two different groups can be distinguished in terms of interest and location: 1) domestic users in the Greece and Thousand Islands area, and 2) municipal water treatment plants in the lower St. Lawrence River (Montreal metropolitan area).

(d) Values and perceptions of the interest
The municipal water supply is obviously considered an essential interest. In general, however, this interest is perceived as not critical as it is only affected in extreme situations. This is also true of other uses such as industries and wastewater treatment plants. Smaller users (intake line, shore residents) may feel they are left aside, but mitigation measures may be more appropriate to solve their problems.

(e) Significant statutory, regulatory and policy restrictions
In the next ten years, the most significant statutory, regulatory or policy restrictions that could affect water regulation are more related to discharge in low water level conditions. Pollutant dispersion, the impacts of outfalls on aquatic biota (Clean Water Act), and thermal dispersion are the main concerns. However, the low water levels at which these concerns should be seriously considered are much below actual regulation levels. In general, Lake Ontario–St. Lawrence River water is of very good quality and eventual regulation regarding water quality for drinking water production should not be problematic.

(f) History of the interest
This interest was introduced in the regulation plan mainly for the downstream portion because municipal plants were identified as vulnerable to water level fluctuations.

(g) Trade flows and current market conditions
Municipal water uses of the system could slowly increase as the population grows.

(h) Effect of last high or low water conditions
High water conditions in the past have not been a problem as low levels are generally more problematic. High water levels experienced more recently, combined with an increased population on some islands resulted in the appearance of new concerns (groundwater contamination). Low water levels were not reported as problematic, possibly because of a smaller withdrawal that can tolerate lower levels.
2. Performance Indicators

- **Infrastructure performance indicator**: drinking water production plant infrastructure costs required to adapt to levels lower than the critical levels identified. This PI is based on cost estimations for building new intake structures when the critical level is reached. The costs provided probably overestimate the costs strictly linked to water level problems. Other solutions relieving part of the problem (lowering demand, etc.) would probably be put forward before a new intake is built.

- **Taste and odours performance indicator**: the costs of upgrading municipal drinking water treatment plants to treat taste and odour compounds. Taste and odours are not regulated and are considered an aesthetic problem. However, the problem is a serious nuisance because it affects both the comfort and the confidence of the population. This PI was once again based on cost estimation for the addition of a treatment stage. For this PI to be trespassed, a low water level is needed for three consecutive years (during 1 QM). More research is needed to define a clear link between water level and severe taste and odour problems resulting in investments from municipalities. In this case, the costs are probably underestimated as higher water levels could result in occasional problems, in combination with other factors.

Other municipal and private interests impacted by water level (e.g., through shoreline wells, groundwater contamination (Wilson Hill area), sewage overload) were evaluated but not represented as performance indicators in the Shared Vision Model. The impacts to those interests were found to be marginal in comparison with the PIs defined.

3. Potentially Significant Benefit Categories Not Addressed by the Current Performance Indicators (Secondary Impacts)

As the Lake Ontario–St. Lawrence River system will remain an abundant source of good quality water, no secondary impacts to municipal and industrial uses were identified.

4. Key Baseline Conditions

The critical values calculated for the Shared Vision Model consider the nominal capacity of plants, thus taking into account future population growth (for the existing plants). The construction of new plants should not be problematic as lower levels would be considered. The impacts were evaluated for the actual Seaway configuration. The change in water depth in the lower St. Lawrence River resulting from widening or deepening of the Seaway would change the conclusions of the analysis.

5. Key Trends

The use of water for municipal and other purposes is not expected to skyrocket in the near future. Water is available throughout the system, but water levels can limit the availability for actual installations. The infrastructure of any new facility that would rely on water (water production plants or others) should be designed to account for more variability in water levels.

6. Expected Consequences of Changes of Regulation

The possibility of relying on other sources of water than the St. Lawrence system is almost inexistent for plants located along it. Mitigation would thus have to be considered. The costs estimated in the Shared Vision Model include the costs of new withdrawal infrastructures for vulnerable municipal facilities. These solutions, however, take a long time to be effective and would require planning. Another impact of level fluctuations is quality deterioration (position of emergency intake) for the Montreal plants. This impact will be alleviated by the treatment upgrade scheduled in the next few years. The taste and odours problem is also linked to lower water levels, and costs of treating them were estimated. Globally, mitigation strategies could be applicable, but the costs would have to be taken into consideration.

The potential loser as a result of new regulation or change in the water system (Seaway) is the lower St. Lawrence, where variations are greater and the infrastructure more sensitive to changes.
7. Adaptive Behaviours
The evaluation of alternatives is based on the most likely future conditions and so where there is evidence that adaptive behavior was expected, it is already included in the analysis.

8. Risk Assessment
The vulnerability of the various water uses to level fluctuations was identified as fairly low under the regulation scenarios considered (very low probability of reaching a critical level). However, the risk associated with very rare events is very high if they are not predicted (e.g., water shortages in Montreal). The information gathered during this project highlighted the need for planning and raised awareness, among the people in charge, of low probability-high risk events.

9. References

Review Process
Author: Annie Carrière and Benoit Barbeau
Reviewed by: N/A
Received TWG Support: Denis Peloquin
External Review: N/A
G. Aboriginal Peoples Contextual Narrative

This context focuses on the intersection of the lives of the people of Akwesasne and the issues at play in a revision of the rules for regulating releases from Lake Ontario. Study team members also communicated with the Tyendinaga Mohawks, about 2,200 people who live along the shores of the Bay of Quinte, just east of Belleville, Ontario, and the Kahnawake Mohawks, about 8,000 people living south of Montreal along the south shore of Lac St. Louis. The Study Board addressed the primary concerns these communities have with regulation in its work on Lake Ontario flooding (Tyendinaga) and low and high levels of Lac St. Louis (Kahnawake). Comparisons of plan results for those issues are in the Main Report.

1. General Socio-economic Context

(a) Number of stakeholders

The Akwesasne community numbers about 13,000 mostly Iroquois people living in a 104 km² (40 mi²) area that straddles the border between the United States and Canada along the St. Lawrence River in the immediate vicinity of the Moses-Saunders Dam.

(b) Organizational characteristics

Akwesasne is the only North American reservation with land on both sides of the Canada-U.S. border, and this unique geographic setting has brought sovereignty issues to the surface that might be less pressing for other tribes that did not deal with customs duties and border checks (Hoxie). The superimposition of the U.S. and Canadian governments has produced three Akwesasne governing bodies. The Mohawk Council of Akwesasne administers the Akwesasne north of the Canadian border, including the Quebec and Ontario portions, while the St. Regis Tribal Council administers the New York portion. These bodies were formed with Canadian and U.S. agreement. The older Mohawk Nation Council is not recognized by Canada or the U.S. but is supported by people who maintain allegiance to the Iroquois Confederacy. This study is one part of a larger fabric of interaction and discussion, between the International Joint Commission and aboriginal people along the Canada-U.S. border, on Lake Ontario regulation and other issues. Two positions on the Study Board were reserved for Akwesasne representatives to ensure that the interests and perspectives of the Akwesasne Mohawks would be considered. These seats are held by James Snyder and Henry Lickers, who were the primary conduits for information between the Akwesasne Mohawks and the Study Board.

(c) Values and perceptions of the interest

Maxine Cole of the Akwesasne Task Force on the Environment (ATFE) wrote the principal summary of Akwesasne concerns and perspectives (Akwesasne Task Force on the Environment). The ATFE was formed in 1987 to promote environmental protection and restoration based on “traditional tribal teachings about the obligation to honor the sacred web of life and guard it for future generations.” According to those teachings, the process of collaborative natural resources management should include the following:

- **Skennen**, which is a state in which all people rationally and empathetically try to achieve a just resolution;
- **Kariwio**, a condition wherein the participants “use their purest and most unselfish minds,” remembering that creation is intended for the benefit of all, including plants and animals; and
- **Kasastensera**, a strength of purpose that results when people act collaboratively and unselfishly in pursuit of wise and just decisions.

The goal is to ensure that seven generations are endowed with the same gifts as the current generation.
History of the interest

The Akwesasne community was established in 1755 near a Jesuit mission, but the Iroquois Confederacy predates the arrival of Europeans and includes the five founding nations (Mohawk, Seneca, Oneida, Onondaga, and Cayuga) and the Tuscarora. The majority of people in Akwesasne are Mohawk or Kanien’kehake, but there are also Abenaki, Onondaga, Oneida, Cayuga, and Huron. The four largest Akwesasne towns are St. Regis Village and Chenail Districts in Quebec, Cornwall Island District in Ontario and Hogansburg in New York.

Effect of last high or low water conditions

The Akwesasne live primarily along Lake St. Francis and so are mostly not directly affected by the regulation plan. Levels in the upper part of the Lake, near Summerstown, are only partly dependent on the release from Lake Ontario and vary within a small range (between about 46.4 and 47.1 m (152.2 and 154.5 ft)), regardless of the plan, when modeled over the range of twentieth century water supplies. Levels in the lower part of Lake St. Francis near Coteau Landing are not affected by the release and are controlled by the operation of Hydro-Québec facilities.

2. Performance Indicators

The Akwesasne Task Force on the Environment has repeatedly pointed out the impact on the Akwesasne community of construction of the regulation dam and the St. Lawrence Seaway project and of pollution from industrial sources. In addition, throughout the Study, the Akwesasne have raised concerns about the operation of the Seaway, including ships’ wakes and the effects of ice breaking and of peaking and ponding within the week for hydropower production. Although changes in the weekly regulation of the project have little direct effect on the Akwesasne lands, the Akwesasne people are concerned about the environmental quality of the entire system. The Task Force report lists the environmental indicators of specific concern, and for the most part these are included in the Environmental TWG performance indicators. Because the Task Force report was commissioned after the environmental research was nearing completion, there are no direct studies of the expansion of wild leek or the impact of regulation on medicinal plants.

3. Potentially Significant Benefit Categories Not Addressed by the Current Performance Indicators (Secondary Impacts)

Because the global concerns of the Akwesasne people are environmental, the same limitations that apply to the Study’s analysis of secondary environmental impacts apply here.

4. References

H. Hydrology and Hydraulics Modeling Technical Work Group Summary

Water level and flows in Lake Ontario and the St. Lawrence River are primarily influenced by the will of nature. Precipitation, evaporation, spring runoff and ice conditions are each elements of the hydrologic cycle. This cycle must be taken into consideration by the St. Lawrence River Board of Control when regulating the outflows of the Lake Ontario–St. Lawrence River system. Much of the regulation of the system is dictated by a forecasting of seasonal weather conditions and current water levels upstream and downstream of the power project at Cornwall, Ontario, and Massena, N.Y.

Due to the complexity of the system and the number of interests affected by water levels and flows, there is a need for computer simulated hydrologic and hydraulic modeling to fairly assess current regulation criteria and allow the International Lake Ontario–St. Lawrence River Study Board to develop and recommend a fair and equitable regulation plan.

Objectives

The primary objectives of the Hydrology and Hydraulics Modeling Technical Group (H&H TWG) were as follows:

- To provide hydrologic and hydraulic modeling information that allows other TWGs to develop and evaluate regulation plans. The information included the following:
 - hydrologic scenarios; water supply inputs in the Great Lakes, Ottawa River and other key tributaries to the St. Lawrence River;
 - recorded historical averages;
 - randomly generated variables;
 - climate variability from General Circulation Models (GCMs);
 - basin supplies to each of the Great Lakes;
 - outflows from the Ottawa River and other key downstream tributaries;
 - hydraulic effects of ice and vegetation; and,
 - flow diversions.
- To simulate water levels and flows from Lake Ontario and in the St. Lawrence River to Trois-Rivières, Quebec, under various regulation plans and water supply scenarios.
- To provide weekly average water levels and flows and estimate, within any given week, the potential variability in levels and flows (i.e., peaking and ponding cycles).
- To assist in the modeling of detailed hydraulic information (e.g., velocities and levels), as requested by other TWGs.

The TWG was also tasked to undertake temperature modeling of the key areas in Lake Ontario at the request of the Environmental TWG.

Key Technical Studies

Great Lakes Net Basin Supply and Ottawa River Inflows Synthetic Generation

In order for the regulation plans to be evaluated by PFEG, it is paramount that these plans be tested for robustness, flexibility and system representation. These aspects are evaluated not only by testing the proposed regulation plan against the recorded historical supplies and flows, but also against simulated series of stochastically generated supplies. The stochastic nature of the simulation process implies that the statistical properties of the simulated and historical supplies are generally similar.
Under this project, the H&H TWG provided PFEG and other TWGs with a 50,000-year supply sequence. For consistency with the historical series, these 50,000 years of sequence were split into 500 series, each 101 years long. These 500 series not only preserve statistical properties such as the mean, standard deviation, skew, etc., but also embed flow sequences outside of the experienced range or sequences of dry or wet supplies historically not observed. In this simulation process, it was not only required that year-to-year temporal properties be conserved, but also that the lake-to-lake and lower-lakes-to-Ottawa-River spatial relationships be preserved. For example, the simulation exhibited wet supply conditions in both lower lakes (Lakes Erie and Ontario) and the Ottawa River system.

In order to match the regulation plan time steps for the Great Lakes and operational model time steps for the Ottawa River system, the stochastic simulation was carried out in four distinct steps. At the first step, yearly time series were computed for the entire system while maintaining the spatial relationship of lakes Erie and Ontario with the southern portions of the Ottawa River system. For the second stage, the yearly supplies were divided into monthly sequences while ensuring the seasonality was preserved. In the third step, monthly sequence of supplies to lakes Erie and Ontario are temporally disaggregated into quarter monthly equivalents. In the last stage, which is applied only to the Ottawa River and the lower tributaries, the quarter-monthly supplies are further disaggregated into daily flow sequences.

For the purposes of simulation, the project was carried out in three distinct spatial zones, namely the Great Lakes, the Ottawa River System and the local tributaries downstream of Lake Ontario control structures and the downstream study limits. These are described briefly:

- **Great Lakes**

The supplies into the Great Lakes are characterized by the size of the basins and are spatially represented by four geographic areas. The supply nodes are for Lake Superior, lakes Michigan and Huron, Lake Erie and Lake Ontario. The spatial dimensions of Lake St. Clair required that it become part of the supply sequence for lakes Michigan and Huron.

 The final stochastic series for the Great Lakes are based on monthly time steps for the upper lakes, while lakes Erie and Ontario are simulated at quarter monthly time steps. This is to maintain the consistency with the available hydrologic models for system operations.

- **Ottawa River**

 With the constraints imposed by the unique features of the Ottawa River watershed and the structure of reservoirs operated by Hydro-Québec, the system was resolved at finer scales both spatially and temporally. For the stochastic series computations, the Ottawa River was divided into 48 sub-watersheds and the supply sequence computed at a daily time step.

 Some of the sub-watersheds in the Ottawa River system were employed to establish a spatial correlation with the Great Lakes basins. For example, the southern sub-watersheds of the Ottawa River exhibit a fairly strong correlation with Lake Ontario supplies and a less strong correlation with Lake Erie supplies. Similarly, the south-eastern sub-basins of the Ottawa River have a strong relationship with the local tributaries below Cornwall.

- **Local Tributaries**

 For the area below Cornwall there are several key streams, individually not significant but collectively important, in the operations of the control structures and the regulation of Lake Ontario. The drainage area of the local tributaries is marked by a group of four major streams that characterize the local inflows. These streams are strongly and spatially correlated with several Ottawa River sub-basins. As such, the sequence of supplies was established using regression relationships developed from the historical flow records.
Climate Change Scenario Development

In recent IJC and U.S. Global Change Research Program studies, the Great Lakes Environmental Research Lab (GLERL) completed modeling of hydrologic impacts of climate change for the Great Lakes region. This work used meteorological outputs from two GCMs and transformed them into hydrological impacts with models of rainfall/runoff, lake evaporation, connecting channel flows, lake regulation, and lake water balances. However, climate change projections were not included in this work for the Ottawa River basin and lower St. Lawrence River. GLERL made GCM results available over these extended areas, and hydrologic modelers at Hydro-Québec expanded the estimation of climate change hydrological impacts over these areas. GLERL and Hydro-Québec compared their climate change projections in preparation for a new joint assessment of climate change impacts on hydrology over the entire Great Lakes-St. Lawrence River basin in conjunction with the latest GCM simulations (the Canadian and U.K. Hadley GCM).

The project focused on a future 20-year window for 2050 (2040-2060). GLERL acquired GCM scenarios for the latest versions of the Canadian and U.K. Hadley models. In order to evaluate the climate change impact, thirty-year windows were chosen with four critical scenarios. Of these, two scenarios were from the third generation Hadley GCM, with the other two from the second generation Canadian GCM. For the purposes of this project, these are termed HADCM3A representing a warm and wet climate regime, HADCM3B for a not so warm and wet condition. For the Canadian GCM, these are CGCM2A for a warm and dry regime and CGCM2B for a not so warm and dry condition. It was noted that the term “dry” implies conditions with less precipitation than the Hadley simulations and not necessarily less precipitation than the current climate regime. These models were refined from the versions used in the U.S. National Climate Change Assessment. In particular, the Hadley Centre model exhibited a better agreement between the effects of atmospheric sulphate aerosols, as represented by the simplified parameterization that they routinely use, and much more lengthy and precise calculations.

GLERL extracted and provided Hydro-Québec with GCM output changes between a baseline period of 1961-1990 and the future 30-year periods. These changes provided for several variables: daily precipitation increase (ratio), minimum daily air temperature increase at 2 m (°C), average daily air temperature increase at 2 m (°C), maximum daily air temperature increase at 2 m (°C), wind speed increase at 2 m (ratio), specific humidity increase (ratio), and cloud cover increase (ratio). GLERL adjusted historical meteorology data for the Great Lakes basin with the GCM climate changes, while Hydro-Québec and the Ministère de l’Environnement did the same for the Ottawa River basin. GLERL then simulated Great Lakes hydrology under the various scenarios while Hydro-Québec and the Ministère de l’Environnement did the same for the Ottawa River basin.

- **Key Findings**
 - The Hadley scenarios generally increase precipitation more than the Canadian GCM scenarios. Precipitation is greater than the base case on all lakes for the Hadley scenarios. For the Canadian scenarios, precipitation is greater on all lakes except Michigan, St. Clair, and Erie. The largest values are seen on Georgian Bay for the HADCM3A scenario and on Erie for HADCM3B.
 - Net basin supply is generally less than the base case for all changed-climate scenarios for all lakes except for the HADCM3B scenario on lakes St. Clair, Erie, and Ontario. The greatest reductions in net basin supply occur on all lakes under the CGCM2A (warm, dry) scenario, followed by either the CGCM2B (less warm, dry) or HADCM3A (warm, wet) scenarios, depending on the lake; the smallest reductions occur on all lakes under the HADCM3B (less warm, wet) scenario.
 - The higher air temperatures under the changed-climate scenarios lead to higher over-land evapotranspiration and lower runoff to the lakes, with earlier runoff peaks since snow pack is diminished and the snow season is greatly reduced. This also results in a reduction in available soil moisture. Water temperatures increase and peak earlier; heat resident in the deep lakes
increases throughout the year. Mixing of the water column diminishes, as most of the lakes become mostly monomictic, and lake evaporation increases. Ice formation is greatly reduced over winter on the deep Great Lakes, and lake evaporation increases; average net supplies drop the most where precipitation increases are modest.

Hydraulics

Hydrodynamic Modeling of the St. Lawrence River

Hydraulic information consisting of water surface elevation, flow directions and velocities was needed by other TWGs to fulfill their own objectives. To meet this obligation, the H&H TWG developed two hydraulic models to address the two distinct reaches, one above the Moses Saunders Dam and one below. These models are briefly described below.

A 2-dimensional hydrodynamic model of the St. Lawrence River system from the outlet of Lake Ontario near Kingston/Cape Vincent to the control structure at Cornwall/Massena was developed and made operational. The 2-dimensional hydraulic model was used to determine detailed velocities, levels and flows in the upper St. Lawrence River to support evaluation of the regulation plans by the navigation, recreational boating and tourism, environmental, coastal/riparian, water supply and/or hydroelectric power TWGs.

The simulations were prepared and processed to allow easy access to the hydrodynamic data for the St. Lawrence River by the TWGs of the Study. A total of 19 simulations were performed to cover the expected range of hydrological conditions. For each of these simulations, an ArcView shapefile was created for the water surface elevation, water depth and 2-dimensional velocity spanning the entire upper St. Lawrence River study area. The shapefile format was created to provide wide compatibility with other numerical modeling and processing tools.

The Commercial Navigation (CN) TWG expressed a need for detailed mean channel velocities for the St. Lawrence River along the main shipping channel. The mean channel velocity in the upper river is dependent on both the level of Lake Ontario and the outflow of the St. Lawrence River as specified at the Moses Saunders plant. For ease of use in the CN TWG evaluation model, a set of equations relating the mean channel velocity by channel leg to the level of Lake Ontario and the outflow of the St. Lawrence River, were developed using the hydrodynamic simulation data.

The Recreational Boating TWG consulted the H&H TWG for assistance establishing the precise water level for the docks and marinas in the upper St. Lawrence River. The computation of water levels at points intermediate to the Shared Vision Model output locations is complicated because the water level depends not only on the upstream level of Lake Ontario but also on the river outflow as specified at Moses-Saunders. The water level information was used by the Recreational Boating TWG to establish stage-damage curves for the docks and marinas in the River.

The members of the Environmental TWG have confirmed accessing the hydrodynamic modeling simulations and are currently making use of the information in their ongoing work related to fish habitat in the upper St. Lawrence River. The scenario outputs encompassing all anticipated hydrological conditions have been generated and placed on the IJC study ftp site. The scenario data includes water levels, point velocities, and water depths over the entire model network covering the Kingston to Cornwall Reach.

A 2-dimensional hydrodynamic model was developed to establish the basic hydrodynamic information for the Lake Saint-Louis area. The simulations were used to assess water depths and velocities for defined discharge scenarios, and also to provide basic data for other types of models that are needed by the other TWGs, such as sedimentation-erosion, wave action and habitat simulations.
Hydrological Information and Forecasting Integration

The U.S. H&H TWG reviewed existing operational net basin supply (NBS) and lake level forecast methods on the Laurentian Great Lakes above Cornwall. The following methods were reviewed: the Corps of Engineers (Detroit District) arithmetic moving average, trend, and multiple correlation methods, the Corps of Engineers (Buffalo District) Lake Ontario and downstream water level heuristic methods, the Canadian historical NBS Monte Carlo analysis, the U.S.-Canadian coordinated data, and GLERL's Advanced Hydrologic Prediction System (AHPS). Conceptual descriptions of each were provided. Extended weather forecasting, pertinent to use in Great Lakes water level forecasting, was also reviewed. NOAA and EC extended forecasts were considered and their bases described conceptually. The relative impacts (worth) of near-real time data availability (initial conditions) and weather forecasts on hydrological forecasts were evaluated by developing forecasts with and without their use and assessing agreement with observations over recent data periods. All existing operational NBS and lake level forecast methods on the Great Lakes were explored above Cornwall by inter-comparing them and their “goodness of forecast.” For the most part, deterministic comparisons were used since all but the Canadian, the Coordinated, and AHPS are deterministic only. Some probabilistic analyses for these latter three, as well as deterministic analyses, were performed.

Forecast agencies are already beginning to incorporate current hydrologic conditions and, in some cases, probabilistic meteorological outlooks into their Great Lakes water level forecasts. They are using combinations of regression, other statistical relationships, and engineering judgment to consider current conditions antecedent to a hydrological forecast. However, much potential exists for forecast improvement if initial conditions could be estimated continuously and then directly used in forecasts through the application of hydrologic process models. Of course, the use of process models requires that adequate meteorological data be available in near real-time and that a near-real-time data reduction package exist to support them.

The following two recommendations emerge:

- consider the use of process models for rainfall-runoff, lake evaporation, and precipitation in forecasts; and
- improve near-real-time data acquisition and reduction for support of hydrological forecast models.

Forecast agencies in the Great Lakes are beginning to notice extended probabilistic meteorology forecasts, appropriate to long-term lake level forecasting, that are available from several agencies over multiple locations, time periods, time lags, and meteorological variables. While the utility of extended probabilistic meteorological outlooks is limited at present, the potential is growing and their use should be planned in future hydrologic forecasting developments. The following recommendation applies:

- incorporate extended probabilistic meteorology outlooks quantitatively into Great Lakes hydrology and water level forecasts.

Evaluations of existing and candidate methodologies for making extended Great Lakes water level forecasts reveals the varying relative performance levels of such approaches. Furthermore, these methodologies will continue to evolve. It is important for Great Lakes forecasting agencies to begin or to continue ongoing evaluations of candidate forecast methodologies so that the strengths and weaknesses of each may be determined and appropriate modifications made, as needed. The following recommendation applies:

- evaluate, in an ongoing manner, alternative methodologies for making extended Great Lakes hydrologic and water level forecasts.

Finally, while allowing the use of initial hydrologic conditions and probabilistic meteorological outlooks, the use of operational hydrological approaches to making extended Great Lakes forecasts also permits the generation of probabilistic hydrological forecasts. This is important since such approaches offer the proper manner in which to consider the wide range of possibilities that always exist, incorporate some of the uncertainty inherent in forecast estimates, and allow consideration of risk by decision makers. The final two recommendations regarding forecast improvements are as follows:
• build operational hydrology forecast systems that estimate and use initial hydrological conditions and
 the use probabilistic meteorology outlooks, to generate extended Great Lakes probabilistic hydrology
 and lake level outlooks for use by decision makers to evaluate the risk associated with their regulation
 decisions; and
• incorporate probabilistic hydrologic forecasts into regulation so that consideration of risk becomes
 part of the decision process.

Recommendations for future work in applying risk-based management to Lake Ontario regulation for the
present IJC Lake Ontario–St. Lawrence River Study are as follows:
• identify and develop technical applications and tools for risk-based decision making with a focus on
 linkages between hydrologic variables and decision-making parameters, and reformulation of current
 tools (Criterion k, lake level forecasts, risk-optimized regulation plan, etc.);
• apply the tools to retrospective case studies to assess their utility and identify the acceptable levels
 of risk of the various interests;
• develop an effective means of communicating risk-based information to policy-makers, agency
 operators, and the public; and
• implement the tools and objectively measure their performance.

Temperature Modeling of Selected Areas
The objective of this project was to develop and make operational a tool or suite of tools capable of
computing the water temperature regime of Lake Ontario, the Bay of Quinte and the upper St. Lawrence
River. The water temperature model(s) were applied to develop several time series of water temperature
data for use by the Environmental TWG, in combination with water level data, to assess the impact of
regulation on the fish species in the region.

For the purpose of analysis, Lake Ontario was divided into three zones, the Lake zone, St. Lawrence River
zone and the Bay of Quinte zone. For the Lake zone, modeling was carried out using a quasi 3-dimensional
model developed at the Ohio State University. The St. Lawrence River zone was analyzed at Clarkson
University in Potsdam using a thermal budget approach. This zone also provided thermal load for the
downstream reaches of the St. Lawrence River. The Bay of Quinte zone was analyzed by Environment
Canada using a coupled hydrodynamic model with a thermal/heat budget component.

The results from the three components were translated into Access databases and provided to the fish
biologists for analysis of the fish models.

Other Projects
Several other projects were required to fulfill the objectives of the H&H TWG, among them the following
three notable initiatives:
• A prediction model to account for the effects of ice on flow retardation and adjustments required for
 climate change scenarios;
• A hydrologic forecast model to simulate the impact of flow from the lower tributaries and its routing
 in the lower reaches; and
• Improvements in the results of the U.S.-based watersheds on flow contributions below the
 Moses-Saunders dam. Five watersheds that drain below the dam were calibrated to improve the
 modeling and prediction capabilities.
Participants

Hydraulics and Hydrologic Modeling Technical Work Group

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tom Croley</td>
<td>U.S. Lead Great Lakes Env. Research Lab., Ann Arbor, MI</td>
</tr>
<tr>
<td>Syed Moin</td>
<td>Cdn Lead Environment Canada, Burlington, Ontario</td>
</tr>
<tr>
<td>David Fay</td>
<td>Cdn Lead Environment Canada, Cornwall, Ontario</td>
</tr>
<tr>
<td>Hung Tao Shen</td>
<td></td>
</tr>
<tr>
<td>Paul Yu</td>
<td>U.S. Army Corps of Engineers, Buffalo, NY</td>
</tr>
<tr>
<td>Yin Fan</td>
<td>Environment Canada, Cornwall, Ontario</td>
</tr>
<tr>
<td>Jean-Francois Bellemare</td>
<td>Quebec ministère du développement durable, de l’environnement et des parcs, Quebec City, QC</td>
</tr>
<tr>
<td>Taoufik Sassi</td>
<td></td>
</tr>
<tr>
<td>Laura Fagherazzi</td>
<td>Hydro Quebec, Montreal, Quebec</td>
</tr>
<tr>
<td>Joan Klaassen</td>
<td>Environment Canada, Downsview, Ontario</td>
</tr>
<tr>
<td>Linda Mortsch</td>
<td>Environment Canada, Waterloo, Ontario</td>
</tr>
<tr>
<td>Jean Morin</td>
<td>Environment Canada, Ste-Foy, Quebec</td>
</tr>
<tr>
<td>Debbie Lee</td>
<td>U.S. Army Corps of Engineers, Cincinnati, OH</td>
</tr>
<tr>
<td>Jose Salas</td>
<td>Colorado State University</td>
</tr>
<tr>
<td>Ed Capone</td>
<td>National Weather Service</td>
</tr>
<tr>
<td>Aaron Thompson</td>
<td>Environment Canada, Burlington</td>
</tr>
<tr>
<td>André Carpentier</td>
<td>Quebec ministère du développement durable, de l’environnement et des parcs, Quebec City, QC</td>
</tr>
<tr>
<td>Pete Loucks</td>
<td>Cornell University, Ithaca, NY</td>
</tr>
<tr>
<td>Frank Quinn</td>
<td>Tecumseh, MI</td>
</tr>
<tr>
<td>Tony Eberhardt</td>
<td>U.S. Secretariat, Buffalo, NY</td>
</tr>
<tr>
<td>Laura Fagherazzi</td>
<td>Hydro Quebec, Montreal, Quebec</td>
</tr>
<tr>
<td>Laura Fagherazzi</td>
<td>Hydro Quebec, Montreal, Quebec</td>
</tr>
<tr>
<td>Joanne Mortsch</td>
<td>Environment Canada, Waterloo, Ontario</td>
</tr>
<tr>
<td>Jean Morin</td>
<td>Environment Canada, Ste-Foy, Quebec</td>
</tr>
<tr>
<td>Debbie Lee</td>
<td>U.S. Army Corps of Engineers, Cincinnati, OH</td>
</tr>
<tr>
<td>Jose Salas</td>
<td>Colorado State University</td>
</tr>
<tr>
<td>Ed Capone</td>
<td>National Weather Service</td>
</tr>
<tr>
<td>Aaron Thompson</td>
<td>Environment Canada, Burlington</td>
</tr>
<tr>
<td>André Carpentier</td>
<td>Quebec ministère du développement durable, de l’environnement et des parcs, Quebec City, QC</td>
</tr>
<tr>
<td>Laura Fagherazzi</td>
<td>Hydro Quebec, Montreal, Quebec</td>
</tr>
<tr>
<td>David Fay</td>
<td>Environment Canada, Cornwall, Ontario</td>
</tr>
<tr>
<td>Hung Tao Shen</td>
<td></td>
</tr>
<tr>
<td>Paul Yu</td>
<td>U.S. Army Corps of Engineers, Buffalo, NY</td>
</tr>
<tr>
<td>Yin Fan</td>
<td>Environment Canada, Cornwall, Ontario</td>
</tr>
<tr>
<td>Jean-Francois Bellemare</td>
<td>Quebec ministère du développement durable, de l’environnement et des parcs, Quebec City, QC</td>
</tr>
<tr>
<td>Taoufik Sassi</td>
<td></td>
</tr>
<tr>
<td>Laura Fagherazzi</td>
<td>Hydro Quebec, Montreal, Quebec</td>
</tr>
<tr>
<td>Joanne Mortsch</td>
<td>Environment Canada, Waterloo, Ontario</td>
</tr>
<tr>
<td>Jean Morin</td>
<td>Environment Canada, Ste-Foy, Quebec</td>
</tr>
<tr>
<td>Debbie Lee</td>
<td>U.S. Army Corps of Engineers, Cincinnati, OH</td>
</tr>
<tr>
<td>Jose Salas</td>
<td>Colorado State University</td>
</tr>
<tr>
<td>Ed Capone</td>
<td>National Weather Service</td>
</tr>
<tr>
<td>Aaron Thompson</td>
<td>Environment Canada, Burlington</td>
</tr>
<tr>
<td>André Carpentier</td>
<td>Quebec ministère du développement durable, de l’environnement et des parcs, Quebec City, QC</td>
</tr>
<tr>
<td>Laura Fagherazzi</td>
<td>Hydro Quebec, Montreal, Quebec</td>
</tr>
<tr>
<td>David Fay</td>
<td>Environment Canada, Cornwall, Ontario</td>
</tr>
<tr>
<td>Hung Tao Shen</td>
<td></td>
</tr>
<tr>
<td>Paul Yu</td>
<td>U.S. Army Corps of Engineers, Buffalo, NY</td>
</tr>
<tr>
<td>Yin Fan</td>
<td>Environment Canada, Cornwall, Ontario</td>
</tr>
<tr>
<td>Jean-Francois Bellemare</td>
<td>Quebec ministère du développement durable, de l’environnement et des parcs, Quebec City, QC</td>
</tr>
<tr>
<td>Taoufik Sassi</td>
<td></td>
</tr>
<tr>
<td>Laura Fagherazzi</td>
<td>Hydro Quebec, Montreal, Quebec</td>
</tr>
<tr>
<td>Joanne Mortsch</td>
<td>Environment Canada, Waterloo, Ontario</td>
</tr>
<tr>
<td>Jean Morin</td>
<td>Environment Canada, Ste-Foy, Quebec</td>
</tr>
<tr>
<td>Debbie Lee</td>
<td>U.S. Army Corps of Engineers, Cincinnati, OH</td>
</tr>
<tr>
<td>Jose Salas</td>
<td>Colorado State University</td>
</tr>
<tr>
<td>Ed Capone</td>
<td>National Weather Service</td>
</tr>
<tr>
<td>Aaron Thompson</td>
<td>Environment Canada, Burlington</td>
</tr>
</tbody>
</table>

References

Secrétariat Archipel, Quebec Department of Municipal Affairs, Projet Archipel, Feasibility Report, 1986.

Thompson, A. (2002) Two-dimensional Hydrodynamic Models for the upper St. Lawrence River from the Outlet of the Lake near Kingston/Cape Vincent to the Control Structure at Cornwall/Massena.
I. Common Data Needs Technical Work Group Summary

Data Collection Prioritization

An extensive analysis was conducted early in the Study to evaluate the utility of existing data, including information on landforms (elevation), land cover classifications and photographic/imagery, for all nearshore wetlands and erodable and flood prone areas. This prioritization effort was based on anticipated needs of other technical work groups in terms of numeric modeling and impact analyses.

The shoreline of Lake Ontario and the St. Lawrence River was segmented into shore units based on consistent geomorphic or hydraulic characteristics. Each shore unit was evaluated in terms of existing conditions (e.g., shore type, substrate, structural protection, adjacent and projected land uses), sensitivity to water level fluctuations, economic damages expected due to hazards, existing geospatial data, and needs for additional data collection. These evaluations were ranked based up degree of risk and anticipated need for new data collection. Figures I-1 and I-2 showcase the results of this analysis for the Lake Ontario and St. Lawrence River shorelines, respectively. As a function of this analysis, priority assignments were made for airborne topographic and bathymetric LIDAR collection for elevation data and for image collection (e.g. aerial photography or satellite imagery) (Figures I-1 and I-2).

Prioritization of Lake Ontario Shore Units

Legend for Ranking

- Bathymetry - 1st Priority
- Bathymetry - 2nd Priority
- Topography - 1st Priority
- Topography - 2nd Priority
- Imagery - 1st Priority
- Imagery - 2nd Priority

![Figure I-1: Lake Ontario shoreline data collection prioritization](image-url)
Elevation Data Collection/Processing

Detailed new bathymetric and topographic data collection was critical for predicting coastal geomorphic changes in both the open lake and riverine environments.

Bathymetric LIDAR surveys were conducted over the Lake Ontario shoreline in July and August, 2001.

The airborne bathymetric LIDAR collection included 4-metre postings of subsurface depths for large tracts of nearshore areas, with some nearshore wetland areas being sampled with 2-metre postings for greater definition. These data generally met U.S. National Map Accuracy standards for 0.5-metre contouring. This is the minimum acceptable level of detail needed to support predictive coastal modeling.

Collection of airborne bathymetric LIDAR through the USACE Mobile office was successful for this endeavour. The USACE monopoly on this technology, however, may have required the Study to pay a premium price for these services. Further, this monopoly could restrict data collection timelines for similar data collection activities in the future. Conventional hydrographic surveys may create more accurate end products, but these surveys are much more expensive since they require substantially more time and manpower to complete.

Collection of topographic elevations through airborne LIDAR surveys or photogrammetric means were extremely useful and relatively cost-effective. Contouring at 0.5-metre intervals was achieved in these surveys as well, with substantial feature collection (e.g., building footprints, bluff lines, transportation and hydrology) occurring at 16 coastal model calibration sites through photogrammetric means.

Merging of bathymetric and topographic surveys was problematic with substantial emphasis having to be placed on ensuring that the vertical datum references were consistent.
Collection of detailed bathymetric and topographic surveys in wetland areas using boat surveys was acceptable, although not all wetland sites were mapped with desired sounding densities due to dense vegetation growth. Surveys of this type are expensive and require substantial labour to conduct.

Use of Flood Damage Reduction Program (FDRP) maps in Ontario to delineate topographic detail in wetland areas was unacceptable. The accuracy of these base maps was not sufficient to derive dependable 0.5-metre contour accuracies in these environments.

Airborne LIDAR data collection was carried out on the lower St. Lawrence River floodplain in November and December 2001. Collection of conventional bathymetric and topographic LIDAR survey data was conducted in Quebec in early May 2001, and within acceptable error bounds, providing maximum utility throughout the remainder of the Study process. The upland extent of these surveys included all areas that could be inundated under all potential regulation scenarios. Collection of topographic LIDAR surveys of the floodplains along the lower St. Lawrence River in autumn was very successful, providing maximum coverage with the lowest-cost technology.

Imagery Collection/Processing

Aerial photography was collected over many of the nearshore areas where intensive investigations would be conducted by other technical work groups (e.g. Coastal, Environmental, Recreational Boating, Municipal Water Use). Aerial photography was also the basis for photogrammetric terrain derivations and feature collection efforts. If resources were more extensive, comprehensive collection of high resolution (i.e., 0.15-m (0.5-ft) pixels) photography/imagery would have been preferable.

High resolution satellite imagery (1 to 5-m (3 to 16-ft) pixels) was only utilized for the Montreal archipelago region. This type of information could have utility elsewhere, but can be expensive, and it can also be logistically difficult to obtain coverage over large tracts of irregular geography.
The Study Board established geographic information system (GIS) standards in the first year of the Study. The initial standards were developed for the following:

- **Characteristics of base maps**

 Base layers include standard topographic and planimetric information usually portrayed on a map. Topographic data include elevation contours, spot heights, and shorelines. Planimetric data include roads and streams as well as administrative and political boundaries.

- **Map Projections**

 Map projections are used to portray a portion of the Earth on a flat surface. Some distortions of conformity, distance, direction, scale, and area always result from this process. A Lambert Conformal Conic projection with associated attributes was selected for use for all study geospatial datasets.

- **Horizontal and vertical control datums to be used**

 Geodetic datums define the size and shape of the Earth and the origin and orientation of the coordinate systems used to map it. The Study used the NAD 83 horizontal datum with the GRS 80 ellipsoid. Two common vertical datums for North America were used in the Study, the North American Vertical Datum of 1988 (NAVD 88) and the International Great Lakes Datum of 1985 (IGLD 85).

- **Measurement units**

 Since Canada and the U.S. use different measurement systems, it was decided that all data would be in metric units.
• Metadata requirements

Metadata is “data about data” and is used to describe the content, quality, condition, and other characteristics of data. The production of compliant metadata was strongly recommended to all study participants to enable the discovery and distribution of study holdings.

• Common geographic nomenclature

The purpose of common geographic nomenclature was to ensure that consistency within the Study in terms of the names of geospatial entities.

Framework Data Creation

The Study participated in a bi-national project funded by GeoConnections, a federal entity in Canada, and the U.S. Federal Geographic Data Committee (FGDC) to create geospatial framework data that was consistent across the border. Geospatial framework data include: political boundaries, hydrologic features, transportation networks, elevation data, imagery and horizontal/vertical control networks. The additional funding provided through this project enhanced the quality of datasets used in coastal process modeling and environmental analyses.

Emphasis on horizontal integration of geospatial data across jurisdictional boundaries was problematic due to varying scales of source information. Different jurisdictions have used different data standards and processing methods, preventing common digital data themes from connecting cleanly at the jurisdictional boundaries. Adjustments to one or more data layers were necessary to insure connectivity. Vertical integration of data (e.g., more information content at smaller scales) was particularly difficult due to inconsistencies of classification approaches and incomplete datasets. Hence, the framework data themes were corrected to a large degree, but required substantial manpower. Many non-framework geospatial data themes (e.g., environmental, recreational boating and municipal features) did not have the same level of horizontal and vertical integration.
J. Information Management Technical Work Group Summary

Information Management Strategy

The development of an Information Management Strategy (IMS) was important for long-term utilization of data assets compiled or created within the Study. The IMS included a comprehensive assessment of available information resources, likely future additional resources, capabilities of partners and alternative approaches for integrated information management. The IMS promoted improvements in data discovery, evaluation and access, all of which were substantially addressed under the Study.

The IMS promoted the development of a distributed approach to information management, rather than central repositories of information. The distributed approach required collaborative work among the Province of Ontario, the State of New York, Environment Canada (Ontario and Quebec Regions) and the Great Lakes Commission. The IMS focused on using the Internet for information discovery, evaluation and access. Unfortunately, many of the stakeholders within the Lake Ontario–St. Lawrence River region have inadequate connections to the Internet or do not have sufficient knowledge to use many of the tools created by the Study. This situation is not permanent, however, since Internet usage is steadily increasing over time. The architecture behind the IMS is shown schematically in Figure I-1.

Information management tools created for the Study are available at http://mds.glc.org/loslrs/ and will be maintained throughout the foreseeable future as part of the IJC’s cooperative support of the Great Lakes Information Network (GLIN). The Study Board decided early on that it could not afford to produce bilingual versions of all information resources (English and French). Rather the Study Board required that all metadata be bilingual to provide equal access for the discovery of Study information.
FTP Support

The first component of the IMS to be implemented was an FTP server, operated and maintained by Environment Canada, Ontario Region. A standard template was created for each TWG to upload digital files to the FTP site, which was used throughout the Study to facilitate information exchange within and among TWGs.

The FTP site, however, should have been policed more rigorously throughout the Study. Information holdings were often poorly documented, without the use of naming conventions, and in some cases, more than one version of the same file appeared. The FTP site had inadequate security provisions (anyone who had access to the site could delete, modify or add files).

The contents of the FTP site were backed-up for archival purposes on a regular basis throughout the Study, with most of the data holdings being moved to the Document Management System. The FTP site will not be available after the Study has been completed, as it was intended for internal Study use only.

Metadata Production

Metadata are records that identify the salient characteristics of data files, including lineage, history, production dates, accuracy, precision, appropriateness for use, distribution limits, etc. The Study Board stressed the importance of completing this necessary documentation, but few TWG members were sufficiently knowledgeable to create metadata without an appropriate template for their information type. Production of compliant metadata was not fully accomplished due to the large volume of data produced within the Study. Instead, metadata production forms were created to ensure that all critical data and Study information resources were documented to the degree necessary to support basic Study information needs.

For some TWGs, metadata production was a substantial burden that was not covered adequately during project budgeting. The Coastal TWG in particular produced several thousand geospatial files to support their predictive modeling. Practical “work-arounds” were created to assemble data files into “families” of datasets with a fraction of metadata records (e.g., profiles along shorelines were grouped within counties with one metadata record).

Metadata has been created for all documents produced by the Study Board, PIAG, PFEG and the TWGs. All geospatial datasets that can be used in future GIS applications are expected to have compliant metadata produced before the end of the Study. The shortcomings in the area of metadata production are likely to affect non-geospatial data holdings, specifically level and flow time series data, hydropower analyses, and commercial navigation, recreational boating and municipal water system datasets. These non-spatial information resources may not be discoverable in the future without metadata.

All digital files should have compliant metadata produced to support their discovery (through search engines) and evaluation (assessment of the type and quality of information) as well as the means of distribution of these resources. Through the largess of Study participants, work is expected to continue after the study is completed to ensure that all critical geospatial data files created by the Coastal TWG are fully documented, since these data have long-term utility for other coastal zone management applications throughout the Lake Ontario–St. Lawrence River system. As well, these data holdings would be useful if adaptive management practices are implemented in IJC outflow control operations.
Document Management System

The document management system developed for the Study is an especially valuable asset. It includes all metadata for all documents produced by the Study and has hypertext links to these resources on secure servers. The document management system was used to pre-determine long-term disposition of Study information resources and to anticipate approaches for continuous access to these resources after the Study is concluded.

Web Mapping Application

When the web mapping application was developed for the Study, it was too late to be an important element in the plan formulation process. This was due to late delivery of geospatial data from the TWGs in the Study process and corresponding changes in distributed web service technologies. The web mapping application includes most geospatial data from the TWGs and provides the linkages to related documents and other materials within the document management system for further information retrieval about a specific geographic region, coastal unit or performance indicator. Using current web mapping service protocol, the application allows dynamic access to geospatial data hosted and maintained by Environment Canada (Ontario and Quebec regions) and by other federal, state and provincial partners. These tools have been improved and enhanced and are expected to be used well into the future, if adaptive management approaches are included in IJC outflow control operations.
Shared Vision Model/Plan Formulation Support

The original intent of linking the information management toolkit to the Shared Vision Model (SVM) was largely unmet. For the most part, this can be attributed to delays in fielding information management tools and to wholesale changes that were made in the Shared Vision Model over time. Equally problematic were the license limitations on the software that was used for the SVM and the inability to move Model's results to a web format. Finalization of the performance indicator suite did not occur until late in year four of the Study, which meant that all metadata produced prior to this date had to be modified to directly relate to these important factors. Few resources were applied to adequately linking the plan formulation products to the information management web pages.

The plan formulation process made use of an Excel spreadsheet, “The Boardroom,” that was housed on the FTP site. While using Excel was ideal for data manipulation, and sharing it within the Study group was relatively easy on the FTP site, the entire contents of the Excel application could not be easily moved to a web format. To this end, a trimmed down web version of “The Boardroom” has been developed and is available on the Study’s website.
Participants

Common Data and Information Management Technical Work Group

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roger Gauthier</td>
<td>U.S. Lead, Great Lakes Commission, Ann Arbor, MI</td>
</tr>
<tr>
<td>Connie Hamilton</td>
<td>Cdn Lead, Environment Canada, Burlington, Ontario</td>
</tr>
<tr>
<td>Ian Gillespie</td>
<td>Cdn Lead, Environment Canada, Burlington, Ontario</td>
</tr>
<tr>
<td>Wendy Leger</td>
<td>Cdn Lead, Environment Canada, Burlington, Ontario</td>
</tr>
<tr>
<td>Joan Pope</td>
<td>U.S. Army Corps of Engineers, Vicksburg, MS</td>
</tr>
<tr>
<td>Paul Murawski</td>
<td>U.S. Army Corps of Engineers, Buffalo</td>
</tr>
<tr>
<td>Jean Francois Cantin</td>
<td>Environment Canada, Sainte-Foy, Quebec</td>
</tr>
<tr>
<td>Bernard Doyon</td>
<td>Environment Canada, Sainte-Foy, Quebec</td>
</tr>
<tr>
<td>Christian Stewart</td>
<td>CJS Inc., Victoria, BC</td>
</tr>
<tr>
<td>Roger Barlow</td>
<td>U.S. Geological Service, Reston, VA</td>
</tr>
<tr>
<td>Mike Robertson</td>
<td>Ontario Ministry of Natural Resources, Peterborough</td>
</tr>
<tr>
<td>Frank Kenny</td>
<td>Ontario Ministry of Natural Resources, Peterborough</td>
</tr>
<tr>
<td>André Plante</td>
<td>Environment Canada, Ste-Foy, Quebec</td>
</tr>
<tr>
<td>PIAG Liaison</td>
<td>Burlington, Ontario</td>
</tr>
</tbody>
</table>

References

